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In this Lecture

* |ntroduction to multi-robot systems
* Jaxonomy

e Collective movement
» Flocking (2 example methods)

» Formations (2 example methods)
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From Single to Multi-Robot Systems

basics of
autonomy

perception action decision-making

\

\

localization motion control

autonomy

navigation
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From Single to Multi-Robot Systems

 Multiple mobile robots — multi-robot systems

 Higher-order goals

e Coordination facilitated through communication

perception action cognition

navigation
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Multi-Robot Systems

* Terms used: robot swarms / robot teams / robot networks
o \Why?
» Distributed nature of many problems
» Overall performance greater than sum of individual efforts

» Redundancy and robustness
 Numerous commercial, civil, military applications

e How to coordinate, cooperate, collaborate, (compete?)

product pickup / delivery
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Example 1: Coordination

* movie credit: Omur Arlsan: 2018
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Example 3: Collaboration

N

* movie credit: R. D'Andrea et al.




Taxonomy

e Architecture: centralized vs. decentralized

» Centralized: one control/estimation unit communicates with all

robots to issue commands; requires synchronized, reliable
communication channels; single-point failures

» Decentralized: scalable, robust to failure; often asynchronous;
sub-optimal performance (w.r.t centralized)

e Communication: explicit vs. implicit

» Implicit: observable states (e.g., in the environment); information
exchanged through common observations

» Explicit: unobservable states; need to be communicated explicitly

e Heterogeneity: homogenenous vs. heterogeneous

» Robot teams can leverage inter-robot complementarities

8 UNIVERSITY OF
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Communication Topologies

* Robot configurations / topologies are often detined
by the maximum range of the available - !
communication module (carefull).

e A disc model can be used to represent the
communication range (very crude approximation)

fully connected star topology random mesh

decentralized

centralized / decentralized centralized / decentralized
coordination

coordination coordination
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Centralization vs Decentralization

g% @ ﬁ_ﬂ_ﬂ

centralized : decentralized
e Centralized control. The controller * Decentralized control. A robot's
computes actions based on control input is based on
knowledge of the global state interactions with its neighbors.
e Centralized estimation. The unit * Decentralized estimation. The
fuses partial information. robot’s estimate is based on

relative observations.
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Centralization vs

Decentralization

max. area coverage / min. time to target
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Decentralization

* Goal: Achieve similar (or same) performance as would be achievable with
an ideal, centralized system.

e Challenges:
» Communication: delays and overhead
» Input: asynchronous; with rumor propagation

» Sub-optimality with respect to the centralized solution

e Advantages:
» No single-point failure
» Can converge to optimum as time progresses
» 'Any-comm’ algorithms exist (graceful degradation under failing comms)

» 'Any-time’ algorithms exist (continuous improvement of solution)
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Collective Movement

In nature:

school of fish

flock of geese herd of mammals

“B UNIVERSITY OF ] )
) CAMBRIDGE re 1 - Introduction and Collective Movement 14




Collective Movement

e Collective movement in natural societies:

» Properties: no collisions; no apparent leader; tolerance of loss
or gain of group member; coalescing and splitting; reactivity to
obstacles; different species have different flocking
characteristics

» Benefits: energy saving (e.g., geese extend flight range by
70%); signs of better navigation accuracy

* Engineered flocking - decentralized:

» Reynolds' virtual agents (Boids)

» Graph-based distributed control for spatial consensus
 Engineered flocking - centralized:

» E.g.: Controls for each robot computed off-board, in the cloud
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Flocking with Boids

* |In 1986, Craig Reynolds (computer animator) wanted to create a
computationally efficient method to animate tlocks
e Goal: O(N); current best was O(N?)

ve N / /X A\ B~ N\
:‘ S e |
N / A o }X / 4 . /
separation alignment cohesion

e A boid reacts only to its neighbors

e Neighborhood defined by distance and angle (region of influence)

e Each boid follows 3 steering rules based on positions and velocities
of neighbors. Recipe: compute 3 components, then combine to form

motion (vector)
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Flocking with Boids

e Sensory system: idealized, but local:

» almost omni-directiona

» no delays (in sensing)

» no noise (in range and bearing)

2D representation of boid
neighborhood

e Behavior-based with priorities (ct Brooks' subsumption):

» Low priority acceleration request towards a point or in a direction
(to direct flock)

» Highest priority to obstacle avoidance ('steer-to-avoid’ with a
different sensory system)

2. UNIVERSITY OF : :
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Flocking with Boids
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Flocking with Consensus
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The Consensus Algorithm

e Aim of consensus: i
) ' :
Reach decentralized agreement e iewn
» Purely based on local interactions

e Consensus
» Based on a graph-topological definition of multi-robot system

» Applications: motion coordination; cooperative estimation; synchronization

e Discrete time consensus update:

1
wli+ 1] = g il +j§%xj[t])

e Consensus outcome:

» All robots converge to average of initial values (convergence rate is exponential):

1
f— o0, x[f] = a1 Z x;[0]

5.3 UNIVERSITY OF
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Flocking with Consensus

Holonomic robot: X=u with X = [x;, y/]

Consensus on heading 6; with a leader agent

/— convergence to leader’s value
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L
robot trajectories heading as a function of time

Note: Collision avoidance and connectivity maintenance are needed in addition to
agreement on direction of motion.
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Other Consensus Applications

—9

%4

-

© 0
xd 2
I

Q0T

configuration
23

flocking

Lecture 1 - Introduction and Collective Movement

UNIVERSITY OF
CAMBRIDGE




Formation Control

e Formations (versus flocks): specific geometric configurations

e Some applications benefit from multiple robots navigating as a group:
» Transport (vehicle formations; platooning); scout platoons for reconnaissance

and search; environmental monitoring; lawn mowing

e Generally required: information on state (e.g. pose) of all robots
e Challenges: J
» Noisy sensors; delay in sensing / actuation ,

» Anonymous robots (no IDs)
e.g.: diamond formation

» Non-holonomicity

e Variants:
» Behavior-based (Balch et al., 1999) (recall: reactive control paradigm)

» Closed-loop control (Das et al., 2002) (recall: error-based control paradigm)

24
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Formation Control

e Referencing schemes:

» Unit-center-referenced: obtained by averaging positions of all robots. A
robot determines its position relative to this center.

» Leader-referenced: robots determine pose relative to leader, which does
not attempt to maintain the formation.

» Neighbor-referenced: robots attempt to maintain relative pose to one (or
a select group) of neighboring robots.

3\ /1 3~ 1 3 ="
4 _—— T 2 4 2 4 2
unit-center leader neighbor

* How is positioning information obtained?
» Each robot estimates its own pose, and communicates this to other robots.

» Or: robots estimate their relative pose via sensor observations

*image credit: Balch 1999
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Behavior-Based Formation Control

¢ Method based on ‘Motor-Schema’ [Balch, Arkin: 1999]

e Different motor schemes are defined; each generates a vector
representing a behavioral response (direction and magnitude of
movement) as a function of sensor stimuli (recall lecture on architectures)

e A gain value is used to attribute relative importance of schemes

Parameter Value Units
avoid-static-obstacle
gain 1.5
sphere of influence 50 meters
minimum range 5  meters
avoid-robot
gain 2.0
sphere of influence 20  meters
minimum range 5  meters
move-to-goal
gain 0.8
noise
gain 0.1
persistence 6  time steps
maintain-formation
gain 1.0
desired spacing 50 meters
controlled zone radius 25  meters
dead zone radius 0  meters

*image credit: Balch 1999
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Behavior-Based Formation Control

maintain-formation: decomposed into two parts

o Ryos, Ryir the Tobot’s present position and heading.
maintain-formation-speed ¢ R4y, the robot’s present speed.
¢ Fyos, the robot’s proper position in formation.
o Fyir, the direction of the formation’s movement; to-
wards the next navigational waypoint.
o Faris, the formation’s axis, a ray passing through £,
in the Fy;, direction.
o Hycsireq, desired heading, a computed heading that
will move the robot into formation.
¢ Oheading, the computed heading correction.
¢ dspeed, the computed speed correction.

‘/speed — Rmag + K X 5speed

maintain-formation-steer

Hdesz’red — Fdz’r — 6hea,dz'ng o Viteer, steer vote, representing the directional output
of the motor behavior, sent to the steering arbiter.
Viteer = Hacsired — Rdir ¢ Vipeed, speed vote, the speed output of the motor be-

havior, sent to the speed arbiter.

[Balch, Arkin: 1999]

I(JZIXIRZ/I%{IS{II%((})E ction and Collective Movement 28




Behavior-Based Formation Control

Example of results, for leader-referenced scheme [Balch '99]:

diamond wedge line column

Assumptions:

e fully networked system; robots have |IDs (non-anonymous)

* robot positioning with little noise and delay

e straight-forward implementation for holonomic (point-) robots

*image credit: Balch 1999
2. UNIVERSITY OF '
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Formation Control

e Non-holonomic robots:

» Proposed method: fore-aft / side-side corrections

» Separate motor behaviors a generated for steering /
speed. Arbiters accept votes from the motor schemas

(x; v 0))

to compute speed / steering values. - . X

» Combined with a rule-based program that selects final speed /
steering value.

* [ssues:
» Behavior-based methods have no guarantees:
» Convergence to desired formation? Stability of formation?

» Need for more principled approaches

* Introduction of control-theoretic principles to provide these guarantees

» One of the first such approaches presented by Das et al., 2002

*image credit: Das 2002
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Closed-Loop Control for Formations

e Method based on feedback linearization [Das et al., 2002]

e Basic case: leader-referenced control based on separation distance
and relative bearing:

Control input: u; = [v,

follower, robot j

(x., y 0_ )

f [ idhaf |

> X

Aim: Find u; such that desired separation [ and desired
bearing l//g are reached, and stably maintained.

2 UNIVERSITY OF i i
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Closed-Loop Control for Formations

Dynamical system model: 7z, =G u, + F u,

with:
COS ¥;; d sin Yii —COos 0
G = | -sin v;j  dcosy; F = SIn y;; 1
B o B ] »

where relative orientation is: f;=6,—6, and y;=/p;+w;

Proportional iij = k(Zg- — Zij) This guarantees convergence
control law: to desired relative state zg.
closed-loop linearized system (Stability is proven in paper.)
. — -1 d
Control: u = G <k(zij — Zij) — Ful.>

5.3 UNIVERSITY OF
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Closed-Loop Control for Formations

12

10
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Closed-Loop Control for Formations

Four robots with omnidirectional cameras:

manually restrained
follower

Bearing / v
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[Das et al., 2002]
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A Figure 8 with Range & Bearing

*movie credit: Gowal, Martinoli, EPFL
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Further Reading

Papers:

e Behavior-Based Formation Control for Multi-Robot Teams: T Balch,
R Arkin: 1999

e A Vision-Based Formation Control Framework: A K. Das, R Fierro, R.
V Kumar, J P. Ostrowski, J Spletzer, C J. Taylor; 2002

e Consensus and cooperation in networked multi-agent systems;
Olfati-Saber, Fax, Murray; 2007
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In this Lecture

e Motivation: task allocation in nature

e Assignment algorithms:
» Hungarian method

» Swarm distribution mechanisms
» Market-based
» Threshold-based

e Credit:

» Threshold-based example from A. Martinoli’s course at EPFL

Iéi%%ils{?ggg Assignment in Multi-Robot Systems 2




Task Allocation vs. Division of Labor

In nature: physical castes

M Minor

Self-grooming
Minor worker
Dealate queen

Male -

Carry orroll egg
Carry or roll larva
Feed larva solids
Carry or roll pupa
Assist eclosion of adult

Minor worker
Dealate queen

Male -
Forage -

Lay odor trail

Feed inside nest
\gression (drag or attack)
Carry dead larva or pupa

Feed on larva or pupa

Lick wall of nest

Antennal tipping

Guard nest entrance

average fraction of time spent in a behavior

58 UNIVERSITY OF
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Behavioral repertoire of majors
and minors: In Pheidole
guilelmimuelleri the minors show
ten times as many different basic
behaviors as the majors.

*image credit: Alcherio Martinoli
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Task Allocation vs. Division of Labor

In nature: temporal polyethism

40
20

10
10

10
10

10
10
10

80

60
40

20

Percentage of time spent in each activity

40 T

20

40 [

20

10 [

Cleaning cells

Tending brood

F

Tending Queen

:

Eating pollen

Feeding & grooming nestmates

f

Ventilating nest

Shaping comb

Storing nectar

Packing pollen
=

Foraging

EE

Patrolling

E__l_ ] N

L — — Resting

- DM e e -
| 4 7 10 13 16 19 22 25
Age of bee (days)
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Behavioral change in worker bees as a
function of age; young individuals work on
internal tasks (brood care and nest
maintenance), older workers forage for
food and defend the nest.

*image credit: Alcherio Martinoli

bot Systems 4



Task Allocation vs Division of Labor

In robotics:

.
-
=

S N
-
1

.

—— -

Monitoring e T S MY Wobilify:on*Demand

N

Autoplay: On

Warehousing and Product Delivery
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Assignment Problems
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Assignment Problems
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Assignment Problems




Assignment Problems

f
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Assignment Problems

[Kumar et al.; UPenn]
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The Assignment Problem

* \Which robot goes where? Which robot does what?

e What is a task?
» Discrete: e.g., pickup parcel X from location 'y, ...
» Continuous: e.g., monitor building X, search area Y...

» Key assumption: task independence
(dependent tasks — scheduling)

* Assignment methods are drawn from multiple fields:

» operations research, economics, scheduling, network flows,
combinatorial optimization.

e Classical problem formulation: bipartite graph matching

7 UNIVERSITY OF
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The Assignment Problem

 What is to be optimized? Utility: an individual robot knows the
value of executing a certain action.

e Utility, depending on context: value, cost, fitness. Knowing the true
(exact) utility is key to finding an optimal assignment.

e Various formulations exist. For example:

—C if R is capable of executing T and Qrr > Crr
U(R, T) — {QRT RT

otherwise

N =Y I {]_(_1_,_1_) ______ A
/{* Il
‘4" 'U(zal)
R,

B8 UNIVERSI
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The Linear Assignment Problem

* In an optimal assignment problem, maximize the system performance:

find x;; that maximize: c .
in': 19 1 S.]Sn
]
m n =1
U = Z lej UG, j) subject to m
i=1 j=1 inj:l, 1 <i<m
j=1
tasks robots
bipartite perfect matching (complete graph)
8 UNIVERSITY OF signment in Multi-Robot Systems

ESmES
s

@9 CAMBRIDGE



The Hungarian Algorithm

e Published by Kuhn in 1955, based on the earlier works of two Hungarian
mathematicians: Dénes K&nig and Jend Egervary.

» O(n3) running time is possible.
e Steps (input is an n x n by matrix with non-negative elements):

» Step 1: Subtract row minima; For each row, find the lowest element and
subtract it from each element in that row.

» Step 2: Subtract column minima; Similarly, for each column, find the lowest

element and subtract it from each element in that column.

» Step 3: Cover all zeros with a minimum number of lines; Cover all zeros in

the resulting matrix using a minimum number of horizontal and vertical
lines. If n lines are required, an optimal assignment exists among the zeros.
The algorithm stops. If less than n lines are required, continue with Step 4.

» Step 4: Create additional zeros; Find the smallest element (call it k) that is

not covered by a line in Step 3. Subtract k from all uncovered elements,
and add k to all elements that are covered twice. Go to Step 3.

B UNIVERSITY OF




The Hungarian Algorithm - Example

Step O: robot-task Step 1: subtract row Step 2: subtract Step 3: cover all zeros
assignment costs minima column minima with a minimum of lines
T T2 T8 T T1iT2 T3 T4 T1iT2 T3 T4 T1iT2 73 T4
Ri 82183 69 92 R1 13 14 0 23| 69 RI 1314 0 8 RI 13140 8
R 77 37 4992 R2 40 0 12 55| 37 R2 40 0 12 40 Eé"'"éié """ 0 1240
BB 11.69 5 86 R 6 64 0 81 S - PEARES - S
R4 8 9 98 28 Re 0 1 90 15| -8 R4 0 1 90 0 R4 0 190 0
-0 -0 -0 -15 3 lines found
Step 4: create Step 3: cover all zeros Stop: An optimal
additional zeros with a minimum of lines assignment exists.
T1iT273 T4 T1iT2 T3 T4 T1iT2 73 T4 T1iT2 73 T4
RI 1314 0 8 R 7 8 0 2 R 7.8 0 2 R 7.8 0 2
- 12 40 R2 40 0 18 40 R2 40 0 18 40 R2 40 0 18 40
"R"é'®'ééi """ 0 66 R 0 5 0 60 R 0 s 0 60 R 0 s 0 60
_6: unmarked elements 4 lines found unique, optimal
+6: twice marked elements assignment found

(find smallest uncovered element) *Example from www.hungarianalgorithm.com

1611\{1&/4%1&1113&5 k Assignment in Multi-Robot Systems 15
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*see Prorok et al. IROS 2017 for an example
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The Hungarian Algorithm

e Assumptions when using an assignment algorithm such as the Hungarian methoad:
» Costs (utilities) are known at a centralized computation unit.

» Costs (utilities) are deterministic (no noise).

» Costs (utilities) do not change (constant).

» 1-to-1 assignment (one robot per task, one task per robot).

e Complications:

. . all of these issues are ver
» Uncertainty around true utility U(ij) ** _ , Y
common in robotics!!

» Dynamic environment (changes in utility / agents)
» Robot / task dependencies (robot heterogeneity / redundancy).

e Consequences:
»  Sub-optimality
» Problems can become NP-hard (for combinatorial matching problems)
» Practically infeasible (centralized solutions may not be possible)

**see Prorok, DARS 2018 for a solution

?‘1 I(JZIXIR]/[%{IS{IIIS((})E ment in Multi-Robot Systems 17




Assignment of Robot Coalitions

Some tasks require more than 1 robot.

How many ways to partition n robots into k non-empty subsets?

Given by the Stirling number of the second kind.
E.g.: 10 robots, 5 tasks: $(10,5) = 42'525

.. I(JZIXIR]/I%{IS{IIIS((})E ignment in Multi-Robot Systems 18




Assignment of Robot Coalitions

The problem of forming robot coalitions:
E is the ground set (all robots) and X is a family of subsets.

yﬂ 72=0 Vy,z€X,y#z2 robot subsets are mutually disjoint

U = E the union of subsets is equivalent to the ground set.

xeX

Set Partitioning Problem: Given a finite set E, a family F of acceptable
subsets of £, and a utility functionu : F' = R , find a maximum-utility
family X of elements in F' such that X'is a partition of E.

The set-partitioning problem is strongly NP-hard. [Garey and Johnson; 1978]

... One potential solution: relaxation of the problem to the continuous domain.
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Countable vs Uncountable Systems

e Difference between a multi-robot system and a robot swarm?

e Swarms are larger, but how large...?

e The method is the key!

T N [ /7 —r—
’5-“‘- l“g e ——— fm é-ll‘?h

!l.'--—": >
- e e — —

Lt | ‘i‘T ”"lz,sLL»ml'l j’g‘@’ - fL‘L!ﬂ.w

* robot-to-task allocation e redistribution of robots among tasks
e method: combinatorial approach e method: mean-field approach
* exact, but computationally demanding * approximative, but fast

ﬁ I(JZIXIR]/[EBRIS{IIIS((})E ent in Multi-Robot Systems 20

\




Redistribution of a Swarm ot Robots

Example: monitor geographical sites
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Redistribution of a Swarm ot Robots

Model: connected tasks

task 1

task 5

task 2

task 4

task 3
"" Iéﬁ%%{ﬁ?ggg ask Assignment in Multi-Robot Systems 22




Redistribution of a Swarm ot Robots

Model: connected tasks What proportion of robots

task 1 / of each kind?

task 5

task 2

task 4

*note: for the purpose of this lecture, assume non-overlapping robot traits task 3
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Redistribution of a Swarm ot Robots

Insight: we can model the distribution dynamics of the robot
swarm as a linear dynamical system!

System state, e.g.:  x = [0.3,0.2,0.1,0.1,0.3]"

/

proportion of swarm at task 1

transition rate matrix distribution of robots over tasks

|/ -

: (s)
Distribution dynamics: X(S) — K(S)X(S) kij
change in distribution of rates  robots

robots of type (s) over tasks MxM Mx 1

(s): robot species

Note: it matrix K has certain properties, this system is stable.

oW -
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Redistribution of a Swarm ot Robots

Robot distribution dynamics: X(S) — K(S)X(S)
rates robots
MxM Mx1
(s)
Solution: x(3) (1) = K7 X(()s)

Given a desired robot distribution x'*)*
Find transition rates K(*)* that are fastest to satisfy x(8)*

Methods: 1. Explicit optimization; [Prorok 2016]
2. Approximation of K; semi-definite programming [Berman 2009]
3. Stochastic optimization [Matthey 2009, Hsieh 2008]
2. UNIVERSITY OF
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Controller Synthesis

Seass? .'...\...' Ya, .0“‘ ] ..‘o‘ I -
~ N
o ., 5
. " ./ We extract rates for task-to-
l .‘ f/ task transitions k,f;) and
- n.l . .....% K

. N RN directly infer the switching
s L probability.

e Probabilistic controller is immediate
e Deterministic controller can also be derived
* Architecture: both open-loop and closed-loop possible
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Redistribution of a Heterogeneous Swarm

Time elapsed: 2.40 Species 0:

Species 2

4.1%

[Prorok et al.; ICRA 2016; T-RO 2017]
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Redistribution of a Heterogeneous Swarm

[Prorok et al.; ICRA 2016]
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Market-Based Coordination

* Robots: “self-interested agents that operate in a virtual economy’

I

e Tasks: “commodities of measurable worth that can be traded”

Example scenario: three robots exploring Mars. The
robots need to gather data around the craters; they
need to visit the 7 highlighted sites. Which robot visits

each site?

*image credit: Dias et al.
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Market-Based Coordination

e Underlying mechanism: auctions
e Auctioneer: offers items (tasks or resources) in announcement

* Participants (robots) submit bids to negotiate allocation of items
» sealed-bid vs. open-cry
» first-price vs. Vickrey auction
e Single-item auction:
» highest bidder wins task
» if no bid beats reserve-price, then auctioneer can retain item
¢ Combinatorial auction:
» multiple items, robots bid on bundles
» a bid expresses synergies between items
e Multi-item auction:
» a robot can win at most one item apiece
» special case of combinatorial auction for bundle of size 1
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Market-Based Coordination

A simple example (multi-item auction)

bids placed for tasks

reward: 120 reward: 150
A B A B
Robot 1 50 100
allocation cost 50 5 S
Robot 2 - 5 70
100 a
70 W

130 \

reserve price not met

Robot 1
profit: 70 = 120-50

Robot 2 system cost: 50+70 = 120
profit: 80 = 150-70

Running time: O(NRM) (greedy) or O(N?R) (optimal) [T. Sandholm; 2002]
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Market-Based Allocation Frameworks

e Murdoch [Gerkey, Mataric; 2002]
» loosely coordinated tasks
» demonstrated on box pushing

» demonstrated robustness, fast auctioning
e TraderBots [Dias et al.; 2004]

» loosely coordinated tasks
» demonstrated on exploration tasks

» demonstrated robustness, scalability, auction types, task trees

 Hoplites [Kalra, Stentz; 2005]
» tightly coordinated spatial tasks
» robots auction plans not tasks
» demonstrated on perimeter sweeping, constrained exploration

8 UNIVERSITY OF
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Centralized vs Decentralized Assignment

P Y9 e

centralized : decentralized
e Centralized assignment. Cost estimates are e Decentralized assignment. Robots do not
known at a central point (computational unit). have global knowledge of each other’s costs.
The unit performs the assignment and : They locally negotiate assignments.

communicates with all robots.

Hybrid mechanisms: locally defined robot cliques can elect
'leader’ robots and perform centralized mechanisms.
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Threshold-Based Assignment

e Fully decentralized mechanism.
e Each robot has an activation threshold for each task that needs to be performed.

e A stimulus:
» reflects the urgency of a task

» continuously perceived locally by each individual robot

e Example: threshold-based control of aggregation [Agassounon, Martinoli; 2002]
» Goal: aggregate all sticks into 1 cluster

» End criterion: robots should stop working once task is achieved

initial situation final situation
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Threshold-Based Assignment

e Stimulus: time needed to find a stick to manipulate (the longer the
time, the lower the stimulus associated with the task).

 Threshold is self-calibrated (fully decentralized).

e Key: The number of manipulation sites (either end of
line of sticks) decreases as global task nears
completion.

[3%3
>

—
w

—
=

e |ftime to find next stick goes beyond threshold
T, then agent switches to resting behavior. [ = rrm——

-=== Private Variable-threshold
Public Fixed-threshold

Avg. cluster size [seeds]

wn

<>

0 100 200 300 400 500 600

K Time [minutes]

Z _ f PR— t 10 3 — Private Fixed-threshold |
k [ ==== Private Variable-threshold

Public Fixed-threshold

i
[E—
Avg. number of active workers
wn

threshold number of sticks time taken to
successfully find kth stick
% 100 200 300 400 500 600
CO”eCted SO fal’ Time [minutes]

*image credit: Agassounon et al.
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Overview ot Allocation Methods

centralized vs

) optimalit completeness
decentralized P y P

Hungarian method centralized optimal guaranteed

The system converges.

centralized or With high probability,

Mean-field approach approximative

decentralized completeness is
guaranteed
Market-based centralized or . greedy (sub-optimal) | depends on reserve
approach decentralized or optimal price
Threshold-based . i .
decentralized suboptimal not guaranteed

approach
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Further Reading

Nice overview of the classical problem:

http://www.assignmentproblems.com/

Seminal papers:

e B. Gerkey and M. Mataric, “A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems”. Int.
Journal of Robotics Research, 2004.

e M. B. Dias et al; “Market-Based Multirobot Coordination: A Survey and Analysis”; 2006
e D.P. Bertsekas, “The Auction Algorithm: A Distributed Relaxation Method for the Assignment Problem”; 1988.
e N. Kalra, A. Martinoli, “Comparative study of market-based and threshold-based task allocation”; 2006

Some new approaches for those interested:

* Redundant robot assignment under uncertainty: A. Prorok, Redundant Robot Assignment on Graphs with
Uncertain Edge Costs, 14th International Symposium on Distributed Autonomous Robotic Systems (DARS),
2018

e Assignment in heterogeneous robot swarms: A. Prorok, M. A. Hsieh, and V. Kumar. The Impact of Diversity on
Optimal Control Policies for Heterogeneous Robot Swarms. IEEE Transactions on Robotics (T-RO); 2017.

e Assignment under privacy constraints: A. Prorok, V. Kumar, Privacy-Preserving Vehicle Assignment for Mobility-
on-Demand Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017
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2019 IEEE RAS Summer School on Multi-Robot Systems

Multi-Robot Navigation ana
Path Planning

Lecture 3

Dr. Amanda Prorok

Assistant Professor, University of Cambridge
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www.proroklab.org
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In this Lecture

e Taxonomy of MR path planning problems
* MR path planning methods:

» Discrete

» Continuous

e Concurrent assignment and path planning

A Iéﬁ%%{ﬁ?ggg ulti-Robot Navigation and Path Planning 2






axonomy of Multi-Robot Path Planning Problems

e Domain: continuous vs. discrete
» Continuous: planning time-parameterized trajectories in metric space.

» Discrete: planning on graphs, or regular grids

* Goal assignment: labeled vs. unlabeled
» Labeled: each robot has a predetermined goal destination

» Unlabeled: all goals must be reached, but assignment is not predetermined

* Problem representation: coupled vs. decoupled
» Coupled: represent the joint state of all robots in the system

» Decoupled: each robot's state represented independently

e Planning: reactive vs. deliberative
» Reactive: dynamic obstacle avoidance; plan as you go (cf. decentralized)

» Deliberative: planning for optimality (cf. centralized, coupled)

e Computation: centralized vs. decentralized

2.7 UNIVERSITY OF
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Multi-Agent Path Planning

e Multi-robot path planning — multi-agent path planning:

» discretized environment (grids or planar graphs)

» point robots (holonomic, no motion constraints)

* The problem:

» Given: a number of agents at start locations
with predetined goal locations, and a known
environment

» Task: find collision-free paths for the agents from their start to
their goal locations that optimize some objective

* Generally, we assumed a labeled problem.

e Classical application domain: automated warehouses (e.g., Amazon)

22 UN
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Multi-Agent Path Planning

e Allowed motion: North, East, South, West

e Collisions:

Ml e

19

vertex-collision edge-collision no collision

e Performance metrics
» Makespan: time of last robot’s arrival time

» Flowtime: sum of arrival times, over all robots

5 UNIVERSITY OF
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Coupled vs Decoupled Path Planning

Potential deadlock Completeness achieved.

e Coupled planning provides completeness.
* Decoupled path planning is not complete, in general.

5.5 UNIVERSITY OF [
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Coupled Path Planning

Coupled tormulation:

Robot i has configuration space: 6,

The joint state space is given by the Cartesian product:

The dimensionality grows linearly w.r.t. the number of robots.
Complete algorithms (such as A*) require time that is at least
exponential w.r.t. the search space dimension!

2.3 UNIVERSITY OF
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Coupled Path Planning

Coupled tformulation for N robots and M cells in grid-world:

i x x| x
@

6 6 &

For M possible states in each configuration space, we have MV
states in the coupled system.

E.g., worst case complexity for A*:  O(|E|) = O(|V|) = O(M")

Exponential complexity in the number of robots!
* if graph is sparse

gation and Path Planning 9
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Coupled Path Planning

 Hardness: NP-hard to solve optimally for makespan or flowtime
minimization [Yu and LaValle; 201 3]

* |tis impossible to minimize both objectives simultaneously (Pareto)

e But: coupled method provides completeness and optimality
» Lots of attention devoted to this field

» Development of approximate solutions (see literature by Sven

Koenig; Howie Choset; Maxim Likhachev)
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Coupled vs Decoupled Path Planning

Potential deadlock Completeness achieved.

* Decoupled path planning is not complete, in general.
e But: in well-formed environments, prioritized decoupled
planning is complete!
»  Well-formed environment: goals are distributed in such a way
that any robot standing on a goal cannot completely prevent
other robots from moving between any other two goals.

[Cap, Novak, Klaeiner, Selecky; 2015]

B UNIVERSITY OF
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Decoupled Path Planning

e Well-formed environment:
» There must exist a path between any two endpoints.

» That path must have with at least R-clearance with respect to static
obstacles and at least 2R-clearance to any other endpoint.

» A robot is always able to find a collision-free trajectory to its goal by
waiting for other robots to reach their goals, and then following a path
around those occupied goals (any prioritization works!).

8 UNIVERSITY OF
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Decoupled Path Planning

* De-coupling the problem:
» Each robot plans in its own space-time
» Robots negotiate path plans as conflicts arise

» De-confliction can be online (dynamic) or oftline (a-priori)

— ‘jx

visibility range or

communication range

5% UNIVERSITY OF . .
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Decoupled, Prioritized Path Planning

t g’y
(il T2, P2)
i
el
i
“if".'i'!'ll‘
| ’
|deal trajectories for 2 robots Space-time graphs (Nl

The red robot is prioritized and plans a space-time path that is optimal.
The blue robot plans a path that does not collide with the red robot’s path.

[Wu, Bhattacharya, Prorok; arxiv 2019]

Iéi%%{ﬁ?ggg -Robot Navigation and Path Planning 14




Decoupled, Prioritized Path Planning

e Key question: How to prioritize robots?

¢ Online, exhaustive method:

» Evaluate all N/ options (where N is robots within communication or
visibility neighborhood) [Azarm, Schmidt; 1997]

e Existing prioritization heuristics (online and oftline):

» ldeal path length: Robots with longer ideal path length have higher

oriority. [Van den Berg et al.]

» Planning time: Robots that take longer to plan their paths get

nigher priority. [Velagapudi, Sycara, Scerri; 2010]

» Workspace clutter: Robots with more clutter in local vicinity have
nigher priority. [Clark, Bretl, Rock; 2002]

» Path prospects: Robots with fewer path options have higher priority
'Wu, Bhattacharya, Prorok; 2019]
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Decoupled, Prioritized Path Planning

—

goal positions

) NG

start positions

~F

i

Example of a multi-agent system where agents have heterogeneous sizes.
Agents with fewer path prospects are prioritized.
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The Continuous Domain

*movie credit: Gowal, Martinoli
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Minkowski Sum

* |n geometry, the Minkowski sum (also known as dilation) of
two sets of position vectors A and B in Euclidean space is formed
by adding each vector in 4 to each vector in B, i.e., the set:

A®dB={a+blae A bec B}

A®B
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Minkowski Sum

static obstacle

—-ADB

‘moving robot’
robot motion control

reference point

As long as reference point stays outside dilated
area, there will be no collisions.
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Velocity Obstacle Method

[Fiorini, Shiller; 1998]

robot motion control
reference point

Two robots, 4 and B, translating in space. Will they collide?
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Velocity Obstacle Method

VOA(v, = 0)

Two robots, 4 and B, translating in space. Will they collide?
Step 1: inflate robot B by area of robot A.

R IVERSITY OF
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Velocity Obstacle Method

VOA(v, = 0)

~-A®B
VO3 (V)

~
~
~
~
~
~
~
-~
~
~
~
~
~
~
~
~ -
~

Step 2: determine whether v4 lies in the velocity obstacle of B to 4
If v4 is outside the VO, then the robots will never collide.

oW -
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Velocity Obstacle Method

VOA(v, = 0)

—-A®B

VOZ(vp)

~
~
~
~
-~
S~
~

Equivalence: vy lies in the velocity obstacle of Bto 4 — the relative velocity v4-vs

lies in the velocity obstacle of B to 4, assuming B does not move.
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Velocity Obstacle Method

set of admissible accelerations

Compute set of admissible accelerations for robot A.

3B UNIVERSITY OF
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Velocity Obstacle Method

set of admissible accelerations

Check that new velocity is outside VO.

-8B UNIVERSITY OF
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Velocity Obstacle Method

* Assumptions:

» Ro

» Ro

oots share t

oots truthfu

e Complications:

neir current (noise-free) position and velocity

ly execute reported velocities

» QOscillations! Scenario: Robots with current velocities v4 and vz

currently lie in each others VOs. Both robots select new v’ and

v’s such that new velocities lie outside respective VOs. In new

situation, the old velocities v4 and vz lie outside VOs. If v4 and vz

are preferable (e.g., they lie on direct path to goal), they will be

chosen again, hence, leading to oscillations.

» Solution: See reciprocal velocity obstacle method.
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Reciprocal Velocity Obstacle Methoao

ldea: Choose a new velocity that is the average of its current velocity and a velocity that lies
outside the other agent’s velocity obstacle. [Van den Berg, Lin, Manocha; 2008]

RVOZ(Vg, Vy)

VO2L(Vp)

The RVO of B to A contains all
the velocities of A that are the
average of the current velocity
v4 and a velocity inside the

Choosing the closest velocity : VO of B to A.
outside the other agent’s RVO '

o Geometric interpretation:
guarantees oscillation-free P

the apex of the RVO lies at:
Vy+ Vg

navigation. S e
(V) - f o

The old velocity of A is inside the new RVO of B to A, given the new velocities.
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Reciprocal Velocity Obstacle Methoao

Four Corners

The following video shows 12 b it hor da o
agents that move to their

diametrically opposite position
on the circle

[D. Manocha et al.]

Iéi%%ﬁ}ggg obot Navigation and Path Planning 28




Concurrent Assignment and Planning of Trajectories

* New problem formulation:

» N robots need to reach N goal locations as efficiently as possible: we want to find the
assignment as well as generate the trajectories, simultaneously.

» Un-labeled problem (any robot may go to any goal)
» Robots must have collision-free trajectories
* Assumptions:
» Robots have a minimum separation distance at start / goal locations

» Robots are holonomic and arrive simultaneously at goals

* <N

% e start locations

N *

\/goal locations

3B UNIVERSITY OF
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Concurrent Assignment and Planning of Trajectories

Given start and goal locations, find assignments AND trajectories
that are optimal and collision-free
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Concurrent Assignment and Planning of Trajectories

Given start and goal locations, find assignments AND trajectories
that are optimal and collision-free

< Lol
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Concurrent Assignment and Planning of Trajectories

What is the optimization objective?

Sum of distances: e half-time goals

Sum of distances squared:

-a LR
artma RN F Rt

o *

o 0y
™) .
- -
o -
. 3 . ]

g . d T

® d . d

* .
- . - o4
-----------

[Turpin et al.; IJRR 2013]
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Concurrent Assignment and Planning of Trajectories

- T LRy
Objective: minimize Z f X;( 1) 'x;(¢)dt
¢9y(t) '—1 tO
Key result: If separation distance between any start and

goal locationis A > 2+2R we can
guarantee collision-free trajectories.

@

cost: distance squared

N N
Solve assignment: ¢ = argmin Z Z ¢i;D;;
¢ i=1 j=I

[Turpin et al.; IJRR 2013]
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[Whitzer, Kennedy, Prorok, Kumar; 2016]



Further Reading

Fundamental planning concepts:

e Some of the planning concepts in Steven LaValle's book.

Seminal papers:

e P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles”;
1998

e J.van den Berg, M. Lin, D. Manocha; “Reciprocal Velocity Obstacles for Real-Time Multi-Agent
Navigation”; 2008

e J.Van Den Berg, M. Overmars. "Prioritized motion planning for multiple robots." 2005

More recent papers:

e M. Turpin, N. Michael and V. Kumar; “CAPT: Concurrent assignment and planning of trajectories
for multiple robots”; IJRR 2013

e M. Cép, P. Novék, A. Kleiner, M. Selecky; “Prioritized Planning Algorithms for Trajectory;
"Coordination of Multiple Mobile Robots”; 2015
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