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In this Lecture

• Introduction to multi-robot systems 

• Taxonomy 

• Collective movement 

‣ Flocking (2 example methods) 

‣ Formations (2 example methods)  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From Single to Multi-Robot Systems
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From Single to Multi-Robot Systems
• Multiple mobile robots  →  multi-robot systems 
• Higher-order goals 

• Coordination facilitated through communication
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Multi-Robot Systems
• Terms used: robot swarms / robot teams / robot networks 

• Why? 

‣ Distributed nature of many problems 

‣ Overall performance greater than sum of individual efforts 

‣ Redundancy and robustness 

• Numerous commercial, civil, military applications 

• How to coordinate, cooperate, collaborate, (compete?)
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Magnus Egerstedt - Aug. 2013 

Application Domains 

Sensor and 
communications networks Multi-agent robotics 

Coordinated control Biological networks 

surveillance / monitoring product pickup / deliverysearch & rescue
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* movie credit: Omur Arlsan; 2018

Example 1: CoordinationExample 1: Coordination



�7Hyldmar, He, Prorok; IEEE ICRA 2019 https://youtu.be/2oJFQnbN5CA

Example 2: Cooperation



* movie credit: R. D’Andrea et al.

Example 3: Collaboration



Taxonomy

• Architecture: centralized vs. decentralized 

‣ Centralized: one control/estimation unit communicates with all 
robots to issue commands; requires synchronized, reliable 
communication channels; single-point failures 

‣ Decentralized: scalable, robust to failure; often asynchronous; 
sub-optimal performance (w.r.t centralized) 

• Communication: explicit vs. implicit 

‣ Implicit: observable states (e.g., in the environment); information 
exchanged through common observations 

‣ Explicit: unobservable states; need to be communicated explicitly 

• Heterogeneity: homogenenous vs. heterogeneous 

‣ Robot teams can leverage inter-robot complementarities
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Communication Topologies

!10

fully connected star topology random mesh

centralized / decentralized 
coordination

centralized / decentralized 
coordination

decentralized 
coordination

• Robot configurations / topologies are often defined 
by the maximum range of the available 
communication module (careful!).  

• A disc model can be used to represent the 
communication range (very crude approximation)
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Centralization vs Decentralization
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centralized decentralized

• Centralized control. The controller 
computes actions based on 
knowledge of the global state  

• Centralized estimation. The unit 
fuses partial information.

• Decentralized control. A robot’s 
control input is based on 
interactions with its neighbors.  

• Decentralized estimation. The 
robot’s estimate is based on 
relative observations.
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Centralization vs Decentralization
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automated warehouses

automated mobility-on-demand

search & rescue / surveillance

connected autonomous vehicles

min. time to product dispatch

min. time to passenger pickup

max. area coverage / min. time to target

max. throughput / min. collision probability

Lecture 1 - Introduction and Collective Movement



Decentralization

• Goal:   Achieve similar (or same) performance as would be achievable with 
an ideal, centralized system. 

• Challenges: 

‣ Communication: delays and overhead 

‣ Input: asynchronous; with rumor propagation 

‣ Sub-optimality with respect to the centralized solution 

• Advantages: 

‣ No single-point failure 

‣ Can converge to optimum as time progresses 

‣ ‘Any-comm’ algorithms exist (graceful degradation under failing comms) 

‣ ‘Any-time’ algorithms exist (continuous improvement of solution)
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Collective Movement
In nature:
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flock of birds

flock of geese

school of fish

herd of mammals
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Collective Movement
• Collective movement in natural societies: 

‣ Properties: no collisions; no apparent leader; tolerance of loss 
or gain of group member; coalescing and splitting; reactivity to 
obstacles; different species have different flocking 
characteristics 

‣ Benefits: energy saving (e.g., geese extend flight range by 
70%); signs of better navigation accuracy 

• Engineered flocking - decentralized: 

‣ Reynolds’ virtual agents (Boids) 

‣ Graph-based distributed control for spatial consensus 

• Engineered flocking - centralized: 

‣ E.g.: Controls for each robot computed off-board, in the cloud
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Flocking with Boids

• A boid reacts only to its neighbors 

• Neighborhood defined by distance and angle (region of influence) 

• Each boid follows 3 steering rules based on positions and velocities 
of neighbors. Recipe: compute 3 components, then combine to form 
motion (vector)
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separation alignment cohesion

• In 1986, Craig Reynolds (computer animator) wanted to create a 
computationally efficient method to animate flocks 

• Goal: O(N); current best was O(N2)
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Flocking with Boids

• Sensory system: idealized, but local: 

‣ almost omni-directional 

‣ no delays (in sensing) 

‣ no noise (in range and bearing) 
 

• Behavior-based with priorities (cf Brooks’ subsumption): 

‣ Low priority acceleration request towards a point or in a direction 
(to direct flock) 

‣ Highest priority to obstacle avoidance (‘steer-to-avoid’ with a 
different sensory system)
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2D representation of boid  
neighborhood
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Flocking with Boids

!19

more info on http://www.red3d.com/cwr/boids/
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Flocking with Consensus
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1 leader robot; robots apply consensus algorithm to agree on heading
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• Aim of consensus:  

‣ Reach decentralized agreement 

‣ Purely based on local interactions 

• Consensus 

‣ Based on a graph-topological definition of multi-robot system 

‣ Applications: motion coordination; cooperative estimation; synchronization  

• Discrete time consensus update: 
 

• Consensus outcome: 

‣ All robots converge to average of initial values (convergence rate is exponential):

The Consensus Algorithm
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xi[t + 1] =
1

|𝒩i | + 1
(xi[t] + ∑

j∈𝒩i

xj[t])

t → ∞, xi[t] =
1

|𝒱 | ∑
i∈𝒱

xi[0]

i

j ∈ 𝒩i
j ∈ 𝒩i
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Flocking with Consensus
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SAULNIER et al.: RESILIENT FLOCKING FOR MOBILE ROBOT TEAMS 7
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Figure 4: Simulation results using the proposed controller with two non-cooperative robots. The non-cooperative robots are shown in red in
(a) and in (b) the bold black lines show the values they are sharing with their neighbors. In (c) the vulnerable, marginal, and resilient states
are shown in red, blue, and green.
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Figure 5: Simulation results using the proposed controller in which a non-cooperative robot shares a time-varying signal with its neighbors.
The bold black line in (b) shows the shared value of the non-cooperative robot. In (c) the vulnerable, marginal, and resilient states are shown
in red, blue, and green.
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Figure 6: Simulation results using the proposed controller without W-MSR. The bold black lines in (b) show the shared values of the
non-cooperative robots. In (c) the vulnerable, marginal, and resilient states are shown in red, blue, and green.
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Figure 7: Simulation results when robots maintain λ2 > 2 instead of the resilience threshold in the presence of one non-cooperative robot.
The bold black line in (b) shows the shared value of the non-cooperative robot.

consensus.

VII. CONCLUSION & FUTURE WORK

We present a method that enables resilient flocking for
mobile robot teams in the presence of non-cooperative robots.
Our method builds on the concept of robust network topologies
that guarantee resilient consensus. Since determining the exact
robustness properties of the network is hard, we make use
of a lower bound metric that can be computed efficiently.
Combining these results, we propose a dynamic connectivity
management strategy that ensures that the communication

network topology remains above a critical resilience threshold.
We propose a switching control policy that allows a team of
mobile robots to achieve resilient consensus on the direction
of motion. Finally, we demonstrate the use of our framework
for resilient flocking, and show simulation results with groups
of holonomic mobile robots.

Our work has the limitation that we have to assume the
robots have access to the quantities λ2 and v2, which are
global properties of the communication graph. The com-
munication graph is defined by the robots’ locations. This

heading as a function of timerobot trajectories

·x = uHolonomic robot: xi = [xi, yi]with

Note: Collision avoidance and connectivity maintenance are needed in addition to 
agreement on direction of motion. 

Consensus on heading θi with a leader agent
convergence to leader’s value
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Other Consensus Applications
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
bility analysis of the consensus equation – for derivations and
full characterizations of these results, see for example [14] and
the references therein.) But, the consensus equation is not safe!
In fact, rendezvous is by design achieving a massive collision
among all the robots. To remedy this and turn the consensus
equation into a truly useful multi-robot coordination law, we
need to augment it to ensure that the robots do not get too close
to each other.

2.2 Weighted Protocols

The construction in Section 2.1 can be generalized by defin-
ing a symmetric, pairwise performance cost between robots i
and j as Ei j(∥xi − x j∥) = E ji(∥x j − xi∥), with the global perfor-
mance cost being defined by

E(x) =
N∑

i=1

∑

( j,i)∈E
Ei j(∥xi − x j∥).

The Chain Rule tells us that

∂Ei j(∥xi − x j∥)
∂xi

=
∂Ei j(∥xi − x j∥)
∂∥xi − x j∥

(xi − x j)
∥xi − x j∥

= wi j(∥xi − x j∥)(xi − x j),

i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = −
∂E
∂xi
= −

∑

( j,i)∈E
wi j(∥xi − x j∥)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that

dE
dt
=
∂E
∂x

ẋ =
N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1

∥xi − x j∥
,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(∥xi − x j∥) =
1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
∥xi − x j∥

.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
∆ − ∥xi − x j∥

)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.
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In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
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If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
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is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.
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other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance
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⇒ wi j =
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What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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achieve the corresponding tasks.
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ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(∥xi − x j∥) =
1
2
∥xi − x j∥2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(∥xi − x j∥) = ∥xi − x j∥ ⇒ wi j =
1
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nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by
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1
2

(∥xi − x j∥ − δ)2 ⇒ wi j =
∥xi − x j∥ − δ
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.

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches ∆, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(∥xi − x j∥) =
∥xi − x j∥2
∆ − ∥xi − x j∥

⇒ wi j =
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protocol could thus become
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∆ − ∥xi − x j∥

)2
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as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
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i=1

∑
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∂Ei j(∥xi − x j∥)
∂xi

=
∂Ei j(∥xi − x j∥)
∂∥xi − x j∥

(xi − x j)
∥xi − x j∥
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∑
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∂E
∂x

ẋ =
N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥
∂E
∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
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brid version of the LaSalle Invariance Principle must be used,
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1
2
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1
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,

which is a form that has been used in [25] to describe coordi-
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.
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should stay connected, [15],[50]–[52]. One way of ensuring
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weights become sufficiently large as the inter-robot distance
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longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance
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∆ − ∥xi − x j∥

⇒ wi j =
2∆ − ∥xi − x j∥

(∆ − ∥xi − x j∥)2 .

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(∥xi − x j∥) =
1

2(∆ − δ)

( ∥xi − x j∥ − δ
∆ − ∥xi − x j∥

)2

⇒ wi j =
1 − δ

∥xi−x j∥

(∆ − ∥xi − x j∥)3 ,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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Formation Control
• Formations (versus flocks):  specific geometric configurations 

• Some applications benefit from multiple robots navigating as a group: 

‣ Transport (vehicle formations; platooning); scout platoons for reconnaissance 
and search; environmental monitoring; lawn mowing 

• Generally required: information on state (e.g. pose) of all robots 

• Challenges: 

‣ Noisy sensors; delay in sensing / actuation 

‣ Anonymous robots (no IDs) 

‣ Non-holonomicity 

• Variants: 

‣ Behavior-based (Balch et al., 1999) (recall: reactive control paradigm) 

‣ Closed-loop control (Das et al., 2002) (recall: error-based control paradigm)

!24

e.g.: diamond formation
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• Referencing schemes: 

‣ Unit-center-referenced: obtained by averaging positions of all robots. A 
robot determines its position relative to this center. 

‣ Leader-referenced: robots determine pose relative to leader, which does 
not attempt to maintain the formation. 

‣ Neighbor-referenced: robots attempt to maintain relative pose to one (or 
a select group) of neighboring robots.  
 
 
 
 

• How is positioning information obtained? 

‣ Each robot estimates its own pose, and communicates this to other robots. 

‣ Or: robots estimate their relative pose via sensor observations

Formation Control
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Behavior-Based Formation Control
• Method based on ‘Motor-Schema’ [Balch, Arkin; 1999] 

• Different motor schemes are defined; each generates a vector 
representing a behavioral response (direction and magnitude of 
movement) as a function of sensor stimuli (recall lecture on architectures) 

• A gain value is used to attribute relative importance of schemes

!27

*image credit: Balch 1999
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Behavior-Based Formation Control
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maintain-formation: decomposed into two parts

maintain-formation-steer

maintain-formation-speed

Robot

Formation Axis
F

Formation Position

pos Fdir

R Rpos dir

Robot

Formation Axis
F

Formation Position

pos Fdir

R Rpos dir

Robot

Formation Axis
F

Formation Position

pos Fdir

R Rpos dir

Robot

Formation Axis
F

Formation Position

pos Fdir

R Rpos dir

[Balch, Arkin; 1999]
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Behavior-Based Formation Control
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Example of results, for leader-referenced scheme [Balch ’99]:

diamond wedge line column

Assumptions:  
• fully networked system; robots have IDs (non-anonymous) 
• robot positioning with little noise and delay 
• straight-forward implementation for holonomic (point-) robots

*image credit: Balch 1999

Lecture 1 - Introduction and Collective Movement



Formation Control
• Non-holonomic robots: 

‣ Proposed method: fore-aft / side-side corrections 

‣ Separate motor behaviors a generated for steering / 
speed. Arbiters accept votes from the motor schemas 
to compute speed / steering values. 

‣ Combined with a rule-based program that selects final speed / 
steering value. 

• Issues: 

‣ Behavior-based methods have no guarantees: 

‣ Convergence to desired formation? Stability of formation? 

‣ Need for more principled approaches 
• Introduction of control-theoretic principles to provide these guarantees 

‣ One of the first such approaches presented by Das et al., 2002
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics

*image credit: Das 2002
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Closed-Loop Control for Formations
• Method based on feedback linearization [Das et al., 2002] 

• Basic case: leader-referenced control based on separation distance 
and relative bearing:
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zij = [lij, ψij]⊤

uj = [vj, ωj]⊤Control input:

Aim: Find     such that desired separation     and desired 
bearing       are reached, and stably maintained.
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ij

ψ d
ij

uj

follower, robot j

leader, robot i
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics
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γij = βij + ψijwhere relative orientation is: 

Dynamical system model: ·zij = G uj + F ui
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controllers for formation control. We discuss the assignment of
formations, changes in formations, and stable switching strate-
gies in Section III using a group of three robots as an example.
Section IV addresses our sensing and estimation schemes for
formation control. Hardware details and experimental results il-
lustrating the application of our multirobot coordination frame-
work are in Section V. Finally, in Section VI, we draw conclu-
sions and suggest future work.

II. CONTROL ALGORITHMS

Before describing the individual components of our control
framework, we list several important assumptions concerning
the group of robots and the formation. We assume, as in [17],
the robots are labeled and one of the robots, designated as ,
is the lead (or reference) robot. The lead robot’s motion de-
fines the bulk motion of the group. The motion of individual
members within the formation is then described in reference to
the lead robot. As in [17] and [19], the relationship between a
robot and its neighboring robots is described by a control graph.
The control graph is an acyclic, directed graph with robots as
nodes, as the parent node, and edges directed from nodes
with smaller integer label values to those with with larger in-
teger values. Each edge denotes a constraint between the robots
connected by the edge and a controller that tries to maintain the
constraint. We present more details on control graphs in the fol-
lowing sections.
In this section, we describe control algorithms that specify

the interactions between each robot and its neighbor(s) or the
environment. The robots are velocity-controlled nonholonomic
car-like platforms and have two independent inputs. The control
laws are motivated by ideas from the well-established area of
input–output feedback linearization [10]. This means we can
regulate two outputs. The kinematics of the th robot can be
abstracted as a unicycle model (other models can be adapted
to this framework)

(1)

where we let , and and are the
linear and angular velocities, respectively.

A. Basic Leader-Following Control
We start with a simple leader-follower configuration (see

Fig. 1) (denoted ), in which robot follows with
a desired Separation and desired relative Bearing . Note
that this relative bearing describes the heading direction of the
follower with respect to the leader. The two-robot system is
transformed into a new set of coordinates where the state of the
leader is treated as an exogenous input. Thus, the kinematic
equations are given by

(2)

where is the system output,
is the relative orientation, is the input for ,

is ’s input, and

(a)

(b)

Fig. 1. Two robots using (a) basic leader-following controller and (b) the
leader-obstacle controller.

with . By applying input–output feedback lin-
earization, the control velocities for the follower are given by

(3)
where is the offset to an off-axis reference point on the
robot and is an auxiliary control input given by

and are the user-selected controller gains. The
closed-loop linearized system is simply given by

(4)
In the following, we prove that under suitable assumptions

on the motion of the lead robot, the closed-loop system is stable.
Since we are using input–output feedback linearization [10], the
output vector will converge to the desired value arbi-
trarily fast. However, a complete stability analysis requires the
study of the internal dynamics of the robot, i.e., the relative ori-
entation .
Theorem 1: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is bounded, i.e., , and the initial
relative heading is bounded away from , i.e., ,
for some . If the control input (3) is applied to , then
the system described by (2) is stable and the output in (4)
converges exponentially to the desired value .

Proof: Let the system error be de-
fined as

(5)
By looking at (4), we have that and converge to zero ex-
ponentially. Then, we need to show that the internal dynamics
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Once again we use input–output linearization to derive a control
law for which gives us the following closed-loop dynamics:

(11)

where is an auxiliary control input and is the
chosen positive definite controller gain matrix. As before, we
will show that the closed-loop system is stable and the robots
navigate keeping formation.
Theorem 2: Assume that the lead vehicle’s linear velocity

along the path is lower bounded, i.e., , its
angular velocity is also bounded, i.e., , and the
initial relative orientation with
and . If the control input obtained from the feed-
back linearization is applied to and , then the formation is
stable and the system output in (11) converges exponentially
to the desired value .

Proof: By Theorem 1, the internal dynamics of are
stable, i.e., the orientation error ( ) is bounded. As a result
for , the relative velocities and orientations of and can
be shown to be bounded under the assumptions of the theorem.
By an analysis similar to Theorem 1, the internal dynamics of

can be shown to be stable (see [20] for details).
Remark 5: In contrast to the previous two-robot formation

controller, this controller allows explicit control of all separa-
tions and minimizes the risk for collisions. Hence, it is preferred
when the separations between robots are small, and when, co-
incidentally, the estimates of distance through vision are better.
Remark 6: Theorems 1 and 2 guarantee that all signals in the

closed-loop formation system are bounded and the output error
vanishes exponentially. However, as in any practical system, un-
modeled dynamics andmeasurement errors will degrade perfor-
mance. The best we can do is guarantee that the output error con-
verges to a neighborhood of the origin. Robust control theory
applied to nonholonomic systems (e.g., [25]) points to a sys-
tematic way of approaching this problem analytically. As can
be seen from our experimental results, since velocities of indi-
vidual robots and sensor errors are bounded, the system errors
are also bounded.

D. Extension to Robots
Results similar to Theorems 1 and 2 are possible for forma-

tions of robots, but they have to be hand crafted, i.e., there
currently are no general results. Instead, we present a discussion
on propagation of stability bounds and formation shape errors
along the leader-follower chains in a given formation.
As we saw earlier in this section, to guarantee stability of the

internal dynamics of a robot following using SBC, we
need and . This, in turn, means that

and will have to be appropriately constrained, e.g.,
and . Notice it is not

enough that , but instead where
will depend on the initial formation error, controller

gains, and . This idea can be applied to an robot
inline formation. Basically, the smaller the initial formation er-
rors and the smoother the leader’s trajectory, the easier it is to
maintain a formation shape.
Thus, the performance associated with a choice of formation

for nonholonomic robots with input–output feedback linearized

(a)

(b)

Fig. 3. Five-robot formation. (a) All SBC controller chains. (b) One SBC and
four SSC controllers. For the same leader trajectory, notice the higher transient
formation shape errors for the control graph (a).

controllers depends on the length of the path for flow of control
information (feedforward terms) from the leader to any follower
in the assigned formation. As this length becomes greater, the
formation shape errors have a tendency to grow. This leads to
a simple heuristic: when deciding between two formation con-
trol assignments that are otherwise similar, we prefer the one
that minimizes the length of leader-follower chains (we prefer

over or whenever possible, see Fig. 3
for an example). We revisit the robot formation assignment
problem in the next section using the notion of control graphs.
We consider two types of scenarios: the control graph is fixed,
and where the control graph is dynamically adapted to the envi-
ronment and the relative robot positions.

III. COORDINATION PROTOCOL

In Section II, we have shown that under certain assumptions
a group of robots can navigate maintaining a stable formation.
However, in real situations mobile robotic systems are subject
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Fig. 10. Triangular to pair-wise localization switch resulting from team geometry (a)–(b) or occlusions in the environment (c).

then switches to . Once the obstacle has been suc-
cessfully negotiated, switches back to according to
the following switching rules:

We now illustrate the application of these concepts to a sim-
ulation of three nonholonomic robots with one obstacle [Fig. 6
(bottom)]. Robot is the lead robot and the desired shape is
an equilateral triangle. The formation shape is achieved and the
robots successfully negotiate the obstacle. During the course of
the motion, robot switches modes to successfully navigate
the obstacle, while robot switches modes based on its loca-
tion with respect to the lead robot, .

B. Formation Control Graphs
When , we can construct more complex formations by

using the same set of controllers and similar switching strate-
gies. However, we need a representation of an robot formation
which scales easily with and allows decentralized decision
making. At the coordination level, for an robot formation to
maintain a desired shape, we need to model the choice of con-
trollers between the individual robots as they move in a given
environment. We use directed graphs to accomplish this [17].
Wemodel the group of autonomousmobile robots as a tuple

where (or, e.g., , see [27])
is the reference trajectory of the lead robot, is a set of shape
vectors describing the relative positions of each vehicle with re-
spect to the reference formation frame , and is a control
graph where nodes represent robots and edges represent rela-
tions between nodes (see details below and in [17]). Without
loss of generality, the formation reference frame is fixed
to the lead robot; however, it is not a requirement in our method.
Sometimes it is necessary to add virtual robots to the group to
represent either moving targets, or trajectories that are along
such features as walls, lanes, or obstacles.
The control graphs describing the formation are designed

from the basic controllers described in the previous section.
In Fig. 7, for example, the formation of a group of four robots
involves one leader following controller ( following ) and
two formation shape controllers ( following and , and

following and ). We call such a directed graph ,
with nodes representing robots and edges describing the
control policy between the connected robots, a control graph.
Fig. 7 shows a directed graph represented by its adjacency
matrix (see [19] for definition). Note the control flow from
leader to follower . If a column has a nonzero entry in
row , then robot is following . A robot can have up to two

Fig. 11. (top) Clodbuster team used for experiments. (bottom) Typical view
from the omnidirectional camera.

leaders. Note that can be written as an upper triangular
matrix for any directed acyclic graph (with possible reordering
of vertices).
For a formation of robots, we can consider a triangulation

approach and Fig. 5 can be used to assign control graphs for
labeled robots. For robot , we use Fig. 5. For , we
select the two nearest neighbors from the set
, and select controllers based on and . Fig. 8 shows

two example simulations of teams of six robots converging to
the desired shape while following the desired trajectory. The
robots apply the above technique to reassign the control graph at
every timestep while relying on the cooperative localization to
reparameterize the shape setpoints for the controllers. The final
assignment is different in the two cases even though the same
desired formation shape is achieved.
An obvious concern regarding stability of the formation arises

when we switch between control graphs and shape vectors to
achieve and maintain a desired physical shape. In Section III-A,
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robots apply the above technique to reassign the control graph at
every timestep while relying on the cooperative localization to
reparameterize the shape setpoints for the controllers. The final
assignment is different in the two cases even though the same
desired formation shape is achieved.
An obvious concern regarding stability of the formation arises

when we switch between control graphs and shape vectors to
achieve and maintain a desired physical shape. In Section III-A,
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Fig. 15. Follower separation and relative bearing for a feedforward controller.
Notice the jump at s as we manually restrained the follower for 5 s. The
controller recovers within a few seconds.

tered environment. However, we note though that when the pose
problem is reduced to 2-D space, relative localization can be ac-
complished by a pair of robots. Using this fact, our implemen-
tation dynamically switches between triangulation-based and
pair-wise localization estimation, based on team geometry and
the external environment.
Consider the case of a triangular formation approaching a

narrow passage through obstacles shown in Fig. 10. A forma-
tion switch is ordered to allow the team to proceed through
the passage [Fig. 10(a)]. As the robots approach a linear for-
mation, there comes a point where the improved accuracy af-
forded by exploiting the triangle constraint is compromised by
operating in proximity to its singularity. At this point, the cen-
tralized observer automatically switches to pair-wise localiza-
tion mode [Fig. 10(b)]. Robot exchanges information with
the team leader ( ) to localize relative to the leader’s frame.

performs a similar exchange with and, as a result, deter-
mines its pose relative to . While this mode switch resulted
from the formation geometry, it can also be directly triggered
by the environment. This is shown in Fig. 10(c), where the line
of sight between two robots is occluded by an obstacle. This oc-
clusion can be detected from a global visibility matrix, resulting
in a pair-wise localization switch.
The pair-wise method serves as the secondary localization

mode for the centralized observer. In most formation geome-
tries, the constraint obtained by determining the relative forma-
tion scale—along with the redundant range measurements for
estimating the absolute scale—result in improved performance

Fig. 16. Ground plane data for formation switching, two runs. The line change
from solid to dotted corresponds to the initiation of the switch.

Fig. 17. Triangular to inline formation switch to avoid obstacles.

in the triangulation-based mode. Mean range errors were typi-
cally 3%–5%, compared with 10% for the pair-wise case.
The advantages resulting from this internal switching are

twofold. It allows the centralized observer to robustly estimate
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Four robots with omnidirectional cameras:

manually restrained  
follower

[Das et al., 2002]
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A Figure 8 with Range & Bearing
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*movie credit: Gowal, Martinoli, EPFL
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In this Lecture

• Motivation: task allocation in nature 

• Assignment algorithms: 

‣ Hungarian method 

‣ Swarm distribution mechanisms 

‣ Market-based 

‣ Threshold-based 

• Credit: 

‣ Threshold-based example from A. Martinoli’s course at EPFL
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Task Allocation vs. Division of Labor
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In nature: physical castesPhysical Castes (Wilson, E. O., 1976)

In Pheidole 
guilelmimuelleri the 
minors show ten times 
as many different 
basic behaviors as the 
majors

0 0,2 0,4 0,6

Self-grooming
Minor worker

Dealate queen
Male

Carry or roll egg
Carry or roll larva
Feed larva solids
Carry or roll pupa

Assist eclosion of adult

Minor worker
Dealate queen

Male
Forage

Lay odor t rail
Feed inside nest

Agression (drag or at tack)
Carry dead larva or pupa
Feed on larva or pupa

Lickwall of nest
Antennal t ipping

Guard nest entrance

M ino r

0 0,2 0,4 0,6

M a jo r

Behavioral 
repertoires of 
majors and 
minors

Average fraction of 
time spent in a given 
activity/behavior 5

*image credit: Alcherio Martinoli

Behavioral repertoire of majors 
and minors: In Pheidole 
guilelmimuelleri the minors show 
ten times as many different basic 
behaviors as the majors.  

average fraction of time spent in a behavior
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Task Allocation vs. Division of Labor
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Temporal Polyethism

Cleaning cells

Tending brood

Tending Queen

Eating pollen

Feeding & grooming nestmates

Ventilating nest

Shaping comb

Storing nectar

Packing pollen

Foraging

Patrolling

Resting
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Age of bee (days)

Behavioral changes in worker bees 
as a function of age

Young individuals work on 
internal tasks (brood care 
and nest maintenance). 
Older individuals forage for 
food and defend the nest.

6

In nature: temporal polyethism

Behavioral change in worker bees as a 
function of age; young individuals work on 
internal tasks (brood care and nest 
maintenance), older workers forage for 
food and defend the nest.

*image credit: Alcherio Martinoli
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Mobility on DemandMonitoring

Situational AwarenessWarehousing and Product Delivery

Task Allocation vs Division of Labor
In robotics:
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Assignment Problems

Lecture 2: Task Assignment in Multi-Robot Systems



!7

?

Assignment Problems
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Assignment Problems
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Assignment Problems

!10

[Kumar et al.; UPenn]
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The Assignment Problem
• Which robot goes where? Which robot does what? 

• What is a task? 

‣ Discrete: e.g., pickup parcel X from location Y, … 

‣ Continuous: e.g., monitor building X, search area Y… 

‣ Key assumption: task independence  
(dependent tasks ⟶ scheduling) 

• Assignment methods are drawn from multiple fields:  

‣ operations research, economics, scheduling, network flows, 
combinatorial optimization. 

• Classical problem formulation: bipartite graph matching
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The Assignment Problem
• What is to be optimized? Utility: an individual robot knows the 

value of executing a certain action. 

• Utility, depending on context: value, cost, fitness. Knowing the true 
(exact) utility is key to finding an optimal assignment. 

• Various formulations exist. For example:

!12

U(R, T ) = {QRT − CRT

0
if R is capable of executing T and QRT > CRT

otherwise

U(1,1)

U(2,1)

R1

R2

T1

Lecture 2: Task Assignment in Multi-Robot Systems



The Linear Assignment Problem
• In an optimal assignment problem, maximize the system performance:

!13

𝒰 =
m

∑
i=1

n

∑
j=1

xij U(i, j) subject to

m

∑
i=1

xij = 1, 1 ≤ j ≤ n

m

∑
j=1

xij = 1, 1 ≤ i ≤ m

find xij that maximize:

i
<latexit sha1_base64="oCKWdbkjQ+x0YRJ+Xxkx1y6wtco="></latexit><latexit sha1_base64="oCKWdbkjQ+x0YRJ+Xxkx1y6wtco="></latexit><latexit sha1_base64="oCKWdbkjQ+x0YRJ+Xxkx1y6wtco="></latexit><latexit sha1_base64="oCKWdbkjQ+x0YRJ+Xxkx1y6wtco="></latexit>

j
<latexit sha1_base64="nxkXWgkUUvmQdvuiZn5mbncc2Qc=">AAACNHicbVDLSgMxFM3UVx1fVZdugqXQbspMERRXVUEUXVSxD+jUkknTNm3mQZIRyjAf5cYPcSOCC0Xc+g1m2lG09UDg5Jx7ufce22dUSMN41lJz8wuLS+llfWV1bX0js7lVE17AMalij3m8YSNBGHVJVVLJSMPnBDk2I3V7eBL79TvCBfXcGznySctBPZd2KUZSSe3MRc66VNUdlD9vD2DecpDsY8TCo6hQ0L89eAhLt+GPdxpFUH18IT04Fm07vI70QTuTNYrGGHCWmAnJggSVdubR6ng4cIgrMUNCNE3Dl60QcUkxI5FuBYL4CA9RjzQVdZFDRCscHx3BnFI6sOtx9VwJx+rvjhA5QowcW1XGO4ppLxb/85qB7B60Qur6gSQungzqBgyqa+MEYYdygiUbKYIwp2pXiPuIIyxVzroKwZw+eZbUSkXTKJpXe9nycRJHGuyAXZAHJtgHZXAGKqAKMLgHT+AVvGkP2ov2rn1MSlNa0rMN/kD7/AJ2a6mY</latexit><latexit sha1_base64="nxkXWgkUUvmQdvuiZn5mbncc2Qc="></latexit><latexit sha1_base64="nxkXWgkUUvmQdvuiZn5mbncc2Qc="></latexit><latexit sha1_base64="nxkXWgkUUvmQdvuiZn5mbncc2Qc=">AAACNHicbVDLSgMxFM3UVx1fVZdugqXQbspMERRXVUEUXVSxD+jUkknTNm3mQZIRyjAf5cYPcSOCC0Xc+g1m2lG09UDg5Jx7ufce22dUSMN41lJz8wuLS+llfWV1bX0js7lVE17AMalij3m8YSNBGHVJVVLJSMPnBDk2I3V7eBL79TvCBfXcGznySctBPZd2KUZSSe3MRc66VNUdlD9vD2DecpDsY8TCo6hQ0L89eAhLt+GPdxpFUH18IT04Fm07vI70QTuTNYrGGHCWmAnJggSVdubR6ng4cIgrMUNCNE3Dl60QcUkxI5FuBYL4CA9RjzQVdZFDRCscHx3BnFI6sOtx9VwJx+rvjhA5QowcW1XGO4ppLxb/85qB7B60Qur6gSQungzqBgyqa+MEYYdygiUbKYIwp2pXiPuIIyxVzroKwZw+eZbUSkXTKJpXe9nycRJHGuyAXZAHJtgHZXAGKqAKMLgHT+AVvGkP2ov2rn1MSlNa0rMN/kD7/AJ2a6mY</latexit>

U(i, j)

bipartite perfect matching (complete graph)

robotstasks
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The Hungarian Algorithm
• Published by Kuhn in 1955, based on the earlier works of two Hungarian 

mathematicians: Dénes Kőnig and Jenő Egerváry. 

‣ O(n3) running time is possible. 

• Steps (input is an n x n by matrix with non-negative elements): 

‣ Step 1: Subtract row minima; For each row, find the lowest element and 
subtract it from each element in that row. 

‣ Step 2: Subtract column minima; Similarly, for each column, find the lowest 
element and subtract it from each element in that column. 

‣ Step 3: Cover all zeros with a minimum number of lines; Cover all zeros in 
the resulting matrix using a minimum number of horizontal and vertical 
lines. If n lines are required, an optimal assignment exists among the zeros. 
The algorithm stops. If less than n lines are required, continue with Step 4. 

‣ Step 4: Create additional zeros; Find the smallest element (call it k) that is 
not covered by a line in Step 3. Subtract k from all uncovered elements, 
and add k to all elements that are covered twice. Go to Step 3.
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The Hungarian Algorithm - Example

!15

*Example from www.hungarianalgorithm.com

Step 0: robot-task 
assignment costs

T1 T2 T3 T4

R1 82 83 69 92

R2 77 37 49 92

R3 11 69 5 86

R4 8 9 98 23

T1 T2 T3 T4

R1 13 14 0 23

R2 40 0 12 55

R3 6 64 0 81

R4 0 1 90 15

Step 1: subtract row 
minima

-69

-37

-5

-8

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 2: subtract 
column minima

-15-0-0-0

Step 3: cover all zeros 
with a minimum of lines

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 4: create 
additional zeros

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

-6:  unmarked elements 
+6: twice marked elements

T1 T2 T3 T4

R1 13 14 0 8

R2 40 0 12 40

R3 6 64 0 66

R4 0 1 90 0

Step 3: cover all zeros 
with a minimum of lines

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

T1 T2 T3 T4

R1 7 8 0 2

R2 40 0 18 40

R3 0 58 0 60

R4 0 1 96 0

Stop: An optimal 
assignment exists.

4 lines found

3 lines found

unique, optimal  
assignment found
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Application: Vehicle-to-Passenger Assignment
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Fig. 2. Analysis of Manhattan taxicab dataset for data collected on Friday
June 1st, 2016. From all rides recorded in that 24 h time-interval, we only
select rides that start and end on the island of Manhattan. We show the
number of passenger pick-ups made per 20 s intervals (green curve). We
also show the total number of occupied taxis at any given moment (blue
curve). The data is smoothed over 30 min rolling windows, and the shaded
areas show the corresponding standard deviations.

(side information) is known, and are explicitly modeled on
this assumption [13]. Such approaches have the downside
that any inconsistency or change in the attacker’s side
information leads to an immediate threat (and privacy is
no longer guaranteed). Indeed, a much stronger definition
of privacy is one that is independent of any current or
future attacker model. Consequently, there has been much
interest in differentially private formalisms that abstract from
adversary’s side information [6].

A. Differential Privacy

Stemming from the domain of statistical databases, the
goal of differential privacy is to protect individual entries in
a given database (in our case, passenger drop-off locations),
while simultaneously allowing aggregate information about
the database to be released through a query (in our case,
a query that outputs the vehicles’ origin locations). The
key requirement is that changing an individual’s entry in
the database (i.e., a vehicle origin location that corresponds
to a specific passenger drop-off location) should not have
a significant affect on the outcome of the query. More
formally, if the probability that a query returns a value from
a database lies within an eϵ multiplicative bound of the
probability that the same query returns the same value from
an adjacent 6 database, then the query is said to produce
ϵ-indistinguishable outcomes [7]. Notably, this definition is
void of any threat model, and hence, is independent of any
side information that the attacker might own. In order to
preserve ϵ-indistinguishability, privacy mechanisms consist
of adding random noise (commonly drawn from a Laplace
distribution) to the query output.

B. Geo-Indistinguishability

The location privacy formalism put forward by Andres et
al. [3], termed geo-indistinguishability, is a generalization of
differential privacy to the metric domain. In the following, we
introduce the main concepts with an adapted notation. Geo-
indistinguishability considers a query that exposes a position

6Two databases are adjacent if they differ by one entry.

x from a database. The privacy leakage can be formulated
as

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ (1)

where x is a true position stored in the original database, x′

is the corresponding altered position stored in an adjacent
database, and x̃ is an obfuscated position. The idea of geo-
indistinguishability is to ensure that two positions x and x′

are indistinguishable when they are close to each other. In
other words, a user enjoys ϵr-privacy within a radius r, if
any two locations that are at most r apart produce query
results with similar distributions.

Definition 1 (Adapted from Def. 3.1 [3]: Geo-indistinguisha-
bility). A mechanism that returns x̃, for a given x or a given
x′, satisfies ϵ-geo-indistinguishability iff for all x and x′:

L = sup
x,x′,x̃

∣∣∣∣ln
P(x̃|x)

P(x̃|x′)

∣∣∣∣ ≤ ϵ sup
x,x′

||x− x′||2 (2)

Building on prior results [5], the authors argue that the
obfuscated position x̃ is to be drawn from a two-dimensional
Laplace distribution inversely scaled by ϵ, and centered at
x. Formally, we have that x̃ ∼ L(x, ϵ), and we define the
corresponding probability density function as PL(x̃|x, ϵ). In
order to satisfy ϵ-geo-indistinguishability, we implement this
proposed privacy mechanism. 7

Fig. 3 demonstrates the effect of this mechanism, applied
to the coordinates of the Flatiron building in Manhattan. We
observe how, as the scale of the Laplacian increases (i.e., ϵ
decreases), the noise (and hence privacy) increases. In the
context of vehicle routing, it becomes clear that increased
privacy comes at the cost of performance deterioration due to
an obfuscation of vehicle positions that leads to suboptimal
vehicle routing. In the following sections, we discuss this
effect and propose a method that enables a minimization of
this loss of performance.

V. BATCH VEHICLE ROUTING UNDER PRIVACY

The goal is to assign and route vehicles to passengers such
that each passenger is picked up, while minimizing the total
assignment cost. We formalize this vehicle routing problem
as finding the optimal assignment solution A⋆:

A⋆ = argmin
A

N∑

i=1

M∑

j=1

cijaij (3)

with constraints
∑N

i aij ≤ 1 and
∑M

j aij ≤ 1 and
∑N

i

∑M
j aij = min(N,M). The element a⋆ij of matrix

A⋆ specifies whether the final solution routes vehicle i to
passenger j.

The system above is a linear sum assignment problem,
also known as the problem of minimum weight matching
in bipartite graphs. We use the Hungarian algorithm (or
Kuhn-Munkres algorithm), to solve the system and find an
optimal assignment A⋆. This assignment is deterministic,

7We note that Th. 4.1 of [3] proves that under double precision with 16
significant digits, the discretization of noisy data points onto a grid does
not incur a loss of privacy.

Publicly available data: 
• OpenStreetMap for whole area 
• Convert to graph (4302 vertices, 9414 edges) 
• Cost of an assignment ~ distance (time) 
• NYC public taxicab dataset

Goal: find optimal assignment matrix A*

Privacy-Preserving Vehicle Assignment for Mobility-on-Demand Systems

Amanda Prorok and Vijay Kumar

Abstract— Urban transportation is being transformed by
mobility-on-demand (MoD) systems. One of the goals of MoD
systems is to provide personalized transportation services to
passengers. This process is facilitated by a centralized operator
that coordinates the assignment of vehicles to individual pas-
sengers, based on location data. However, current approaches
assume that accurate positioning information for passengers
and vehicles is readily available. This assumption raises privacy
concerns. In this work, we address this issue by proposing a
method that protects passengers’ drop-off locations (i.e., their
travel destinations). Formally, we solve a batch assignment
problem that routes vehicles at obfuscated origin locations
to passenger locations (since origin locations correspond to
previous drop-off locations), such that the mean waiting time
is minimized. Our main contributions are two-fold. First,
we formalize the notion of privacy for continuous vehicle-to-
passenger assignment in MoD systems, and integrate a privacy
mechanism that provides formal guarantees. Second, we present
a polynomial-time iterative version of the Hungarian algorithm
to allocate a redundant number of vehicles to a single passenger.
This algorithm builds on the insight that even during peak
rush hour there are unoccupied (redundant) traveling vehicles.
This strategy allows us to reduce the performance deterioration
induced by the privacy mechanism. In particular, it enables
the exploration of the trade-off between privacy levels, waiting
time, and deployed fleet size. We evaluate our methods on
a real, large-scale data set consisting of over 11 million taxi
rides (specifying vehicle availability and passenger requests),
recorded over a month’s duration, in the area of Manhattan,
New York. Based on current traffic statistics, our evaluations
indicate that privacy can be achieved without incurring a
significant loss of performance, and that this loss can be further
controlled by varying operator or user preferences.

I. INTRODUCTION

The availability of location-based services is transforming
a wide variety of applications. This development is being fu-
eled by the increasing use of personal mobile communication
devices (smart phones) that are endowed with positioning
sensors, such as GPS. Importantly, the availability of precise
positioning information in dense urban settings, and the
joint decrease in communication costs, has paved the way
for mobility-on-demand systems (MoD), such as Lyft 1 and
Uber 2. The potential of improved urban mobility systems
has been largely acknowledged due to the possibility of
reducing congestion, vehicle service cost and emissions [12].
Importantly, such services also respond to the needs of indi-
viduals, for example by reducing travel cost (through vehicle-

We acknowledge the support of NSF grants IIS-1426840 and CNS-
1521617, ARO grant W911NF-13-1-0350, and TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA. All authors are with the GRASP Labo-
ratory at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
{prorok|kumar}@seas.upenn.edu

1http://www.lyft.com/
2http://www.uber.com/

29 km/h

8 km/h

Fig. 1. Topological representation of Manhattan as computed by our
framework described in Sec. III. The edges of the graph are colored to
represent the expected traversal speed. We zoom into the area around the
Flatiron building, located at 40°44’ 27.8196” N 73°59’ 22.9164” W.

sharing) and reducing waiting times (through centralized
vehicle coordination) [2].

However, the use of location-based services to facilitate
MoD systems poses a privacy threat to the individual par-
ticipants. Indeed, vehicles reporting the exact coordinates
of a user’s drop-off location (travel destination) may reveal
sensitive information about the user’s habits, and hence,
may deter users from using such systems. Consequently,
we ask ourselves what were to happen if vehicle locations
were not reported precisely, but rather imprecisely. Indeed,
by perturbing the vehicle locations, it is expected that the
user will enjoy greater privacy — at the cost of a loss of
service quality. Hence, our goal is to propose a solution that
protects user travel destinations, thus ensuring privacy, while
simultaneously minimizing the loss of MoD service quality.

In this work, we consider a fleet of vehicles and passengers
demanding to be picked up at specific locations. We pose this
problem as a batch assignment of vehicles to passengers,
similar to the approach taken in [2]. This assignment is
facilitated by a centralized operator that collects all customer
requests, i.e. the locations at which a vehicle is requested.
Once a passenger is assigned a vehicle, she communicates
her travel destination to her vehicle (by-passing the central
operator). Upon completion of the passenger transport, the
vehicle immediately communicates its availability to the
central operator and specifies its current location. Since doing
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The Hungarian Algorithm
• Assumptions when using an assignment algorithm such as the Hungarian method: 

‣ Costs (utilities) are known at a centralized computation unit. 

‣ Costs (utilities) are deterministic (no noise). 

‣ Costs (utilities) do not change (constant). 
‣ 1-to-1 assignment (one robot per task, one task per robot). 

• Complications: 

‣ Uncertainty around true utility U(i,j)   **  

‣ Dynamic environment (changes in utility / agents) 

‣ Robot / task dependencies (robot heterogeneity / redundancy). 

• Consequences: 

‣ Sub-optimality 

‣ Problems can become NP-hard (for combinatorial matching problems) 

‣ Practically infeasible (centralized solutions may not be possible)

!17

all of these issues are very 
common in robotics!!
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Assignment of Robot Coalitions

!18

Some tasks require more than 1 robot.

How many ways to partition n robots into k non-empty subsets?

Given by the Stirling number of the second kind.

E.g.: 10 robots, 5 tasks:  S(10,5)  = 42’525
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Assignment of Robot Coalitions

!19

Set Partitioning Problem: Given a finite set E, a family F of acceptable 
subsets of E, and a utility function                      , find a maximum-utility 
family X of elements in F such that X is a partition of E.  

u : F ↦ ℝ+

⋃
x∈X

= E

y⋂z = ∅ ∀y, z ∈ X, y ≠ z

The problem of forming robot coalitions:

robot subsets are mutually disjoint

the union of subsets is equivalent to the ground set.

The set-partitioning problem is strongly NP-hard. [Garey and Johnson; 1978]

E is the ground set (all robots) and X is a family of subsets.

… One potential solution: relaxation of the problem to the continuous domain.
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Countable vs Uncountable Systems
• Difference between a multi-robot system and a robot swarm? 

• Swarms are larger, but how large…? 

• The method is the key!

!20

• redistribution of robots among tasks 
• method: mean-field approach 
• approximative, but fast

• robot-to-task allocation 
• method: combinatorial approach 
• exact, but computationally demanding
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Redistribution of a Swarm of Robots

!21

Example: monitor geographical sites

task 1

task 2

task 3

task 4

task 5

transitioning 
frequency
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Redistribution of a Swarm of Robots

!22

Model: connected tasks
task 1

task 2

task 3

task 4

task 5
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Redistribution of a Swarm of Robots

!23

What proportion of robots 
 of each kind?

*note: for the purpose of this lecture, assume non-overlapping robot traits

Model: connected tasks
task 1

task 2

task 3

task 4

task 5
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Redistribution of a Swarm of Robots

!24

Distribution dynamics:

robots 
M x 1

rates 
M x M

ẋ(s) = K(s)x(s)
⎬ ⎬

k(s)?ij

change in distribution of  
robots of type (s) over tasks

⎬

Insight: we can model the distribution dynamics of the robot 
swarm as a linear dynamical system!

(s): robot species 

distribution of robots over taskstransition rate matrix

System state, e.g.: x = [0.3, 0.2, 0.1, 0.1, 0.3]⊤

proportion of swarm at task 1

Note: if matrix K has certain properties, this system is stable.
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Redistribution of a Swarm of Robots

!25

Robot distribution dynamics:

Methods:  

Solution: x(s)(t) = eK
(s)t x(s)

0

Given a desired robot distribution 
Find transition rates                  that are fastest to satisfy    

Since the total number of robots and the number of robots
per species is conserved, the system in Eq. 3 is subject to the
constraints

X
⊤ · 1 = [N (1), N (2), . . . , N (S)]⊤ (6)

with X ≽ 0, (7)

where ≽ is an element-wise greater-than-or-equal-to operator.

C. Problem Statement

Our aim is to redeploy the robots of each species, distributed
according to X(0) initially, so that a desired trait distribution
Y⋆ is reached. As described in the introduction, we will
consider two goals. A goal consists of a set of admissible trait
distributions, and is described by a function G : N+ M×U →
Ω, where Ω is the set of sets of matrices of size M ×U . The
goal function G takes as input a target trait distribution Y⋆

and returns a set of admissible trait distributions G(Y⋆).
We study the following two goal functions in detail.

• G1(Y⋆) = {Y | Y⋆ = Y}: This goal is achieved by
a trait distribution that is exactly equal to the target trait
distribution. Thus, the robots must organize themselves
among tasks such that the exact number of traits is met
for each task.

• G2(Y⋆) = {Y | Y⋆ ≼ Y}: This goal is achieved by
trait distributions that are equal or greater than the target
trait distribution. Thus, robots can organize themselves
such that there is an excess of traits for any task.

Finally, the problem consists of finding an optimal rate matrix
K(s)⋆ for each species s so that the goal is reached as fast as
possible:

K(s)⋆, τ⋆ = argmin
K(s),τ

τ (8)

such that X(τ⋆) ·Q ∈ G(Y⋆) (9)

The solution leads to a robot configuration X(τ⋆) that satisfies
Eq. 9, subject to Eq. 6 and Eq. 7. In other words, by computing
optimal rates, we are centrally synthesizing the feedback
policy based on the abstract state information X(0). We will
initially assume that this information can be gathered centrally,
and that the control input K(s)⋆ can be broadcast to the
swarm. Later, in Section V, we see how to infer the abstract
state information using local estimators, enabling the robots
to synthesize the feedback policy in a decentralized manner.

III. DIVERSITY METRIC

Since the desired state of our system is solely de-
scribed through Y⋆, the corresponding final robot distribution
X(τ⋆) = X⋆ that achieves the goal G(Y⋆) is not known
a priori. In particular, there may be several X⋆ that satisfy
Eq. 9 – this is true for both goals G1 and G2. Hence, we
pose the question: Can we infer properties of the species-

trait matrix Q that quantify how easy it is to find a solution
X⋆ that reaches G(Y⋆)? In the following, we show how Q

embodies the diversity of the robot community, and how we
can quantitatively evaluate the diversity to make conclusions
about the system’s performance.

A. Definitions

Given an unlimited number of robots per species, it may be
possible to reach any given goal G(Y⋆) with a subset of the
original robot species (independent of the target trait distribu-
tion Y⋆). We call the species belonging to an inclusion-wise
minimal subset the minspecies, and we refer to the size of
this subset as the minspecies cardinality of the system. More
formally, we introduce the following terminology:

Definition 1 (Minspecies): In a robot community described
by a species-trait matrix Q, a minspecies set is a subset of
rows of Q with minimal cardinality, such that the system can
still reach the goal G(Y⋆). We represent minspecies by a
matrix Q̂ containing a subset of the original rows of Q such
that for any Y⋆ there exists at least one robot distribution X̂
for which X̂Q̂ ∈ G(Y⋆).

Definition 2 (Minspecies cardinality): The minspecies car-
dinality of a robot community is given by the cardinality of
the minspecies set. It is a function DG : {0, 1}S×U → N+

that takes a species-trait matrix Q as input, and returns the
minimum number of rows of Q that are needed to reach
G(Y⋆) for any Y⋆.

B. Implementation

In this section, we develop the minspecies cardinality of
our two goals G1 and G2. In particular, we demonstrate that
for both goals, the minspecies cardinality is a meaningful
quantitative measure of the constraint in Eq. 9.

Proposition 1: The minspecies cardinality with respect to
goal G1 is

DG1(Q) = rank(Q) (10)

This implementation of the minspecies cardinality is directly
related to the concept of algebraic independence, and hence,
we use the specialized term eigenspecies (as previously intro-
duced in [22]).

Proof: The admissible trait distribution set contains a sin-
gle target trait distribution, Y⋆, and thus, Eq. 9 is equivalent
to Y⋆ = X⋆Q. The matrix Q⊤ can be rank-factorized into
the product of two matrices A and Q̂ such that Q⊤ = Q̂⊤A⊤

with Q̂ containing a subset of the rows of Q [25]. Since
Y⋆ = X⋆Q = X⋆AQ̂, there exists a robot distribution
X̂ = X⋆A for which X̂Q̂ = Y⋆. Hence, as Q̂ has minimal
size (due to the rank-factorization), Q̂ is a minspecies matrix.

Indeed, the rank of Q quantifies the number of non-collinear
species in Q that span the solution space of the equation
X⋆Q = Y⋆ (with X⋆ unknown):

• If rank(Q) < S, the system is underdetermined, and
an infinite number of solutions X⋆ will satisfy Eq. 9.
In other words, at least one species in the system can
be replaced by a combination of the other species. As
the rank decreases, the redundancy of the community
increases.

• If rank(Q) = S, there is only one solution X⋆ that
satisfies Eq. 9. In other words, no species in the system
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x(s)?
x(s)?

1. Explicit optimization; [Prorok 2016] 
2. Approximation of K; semi-definite programming [Berman 2009] 
3. Stochastic optimization [Matthey 2009, Hsieh 2008]

robots 
M x 1

rates 
M x M

ẋ(s) = K(s)x(s)

⎬ ⎬
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Controller Synthesis

!26

• Probabilistic controller is immediate 
• Deterministic controller can also be derived 
• Architecture: both open-loop and closed-loop possible

k(s)?ij

We extract rates for task-to-
task transitions      , and 
directly infer the switching 
probability.
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Redistribution of a Heterogeneous Swarm

!27

[Prorok et al.; ICRA 2016; T-RO 2017]
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Redistribution of a Heterogeneous Swarm

!28

[Prorok et al.; ICRA 2016]
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Market-Based Coordination
• Robots: “self-interested agents that operate in a virtual economy” 

• Tasks: “commodities of measurable worth that can be traded”

!29approach in which robots compete in auctions for each
task of visiting a site. After estimating their resource usage
for an offered task and submitting bids based on those
expected costs, the robot with the best bid is awarded a
contract for that site.

Suppose that we offer a maximum reward of $50 for
each task and that robots incur a cost of $2 for each meter
of travel (since the resource of concern is energy con-
sumed). This $50 is a reserve price that essentially says that
the task should only be attempted if the site can be reached
by increasing one’s path length by less than 25 m. Further
suppose that a robot A is only 5 m from a site S. Since A
would have to spend $10 to complete the task, it bids $10.
Meanwhile, a robot B that is 10 m from the site bids $20. A
is awarded the contract because it can perform the task
more efficiently and for less than the reserve price.

This simple example illustrates the basic mechanism of
a market-based approach to coordination. As the problem
increases in complexity with the addition of more robots,
more resources (e.g., time, network bandwidth, computing
power, sensors, etc.), added constraints between the tasks,
dynamically changing tasks, and so forth, the coordination
approach requires added functionality to produce efficient
solutions. We use this distributed sensing scenario
throughout the remainder of the paper to illustrate the
complexities of coordination and the diversity of market-
based approaches.

The earliest examples of market-based multiagent
coordination appeared in the literature over 30 years ago
[1], [2] and have been modified and adopted for multirobot
coordination in more recent years. This paper is motivated
by the growing popularity of market-based approaches and
the lack of a comprehensive review of these approaches.
This paper makes three contributions to the robotics
literature. First, it provides a tutorial on market-based
approaches by discussing the motivating philosophy,
defining the requirements and tradeoffs inherent in such
approaches, analyzing their strengths and weaknesses, and
placing them appropriately in the context of the larger set

of approaches to multirobot coordination. Second, this
paper surveys and analyzes the relevant literature. Finally,
it inspires and directs future research on this topic through
a discussion of remaining challenges.

The scope of this paper is limited to market-based
approaches for coordinating teams that include robots.
Moreover, this review principally considers approaches
that actively reason about the existence of other agents
when coordinating the team, in contrast to approaches in
which agents coexist. Nevertheless, related publications
outside the stated scope of this paper are included as
necessary to augment the discussion.

The following section provides an introduction to
market-based mechanisms for readers less familiar with
the field. This overview is followed by a extensive review of
market-based multirobot coordination approaches to date,
categorized and analyzed across several relevant dimen-
sions: planning, solution quality, scalability, dynamic
events and environments, and heterogeneity. The paper
concludes with a summary of the survey and future
challenges in this research area.

II . OVERVIEW

In this section, we discuss key concepts that will provide a
foundation for the remainder of the paper, including a
definition of market-based approaches and an introduction
to auctions. We then place market-based approaches in the
larger spectrum of coordination approaches.

A. Definition of a Market-Based Approach
Most market-based multirobot and multiagent coordi-

nation approaches share a set of underlying elements.
Market theory provides precise definitions for several of
these elements. Borrowing from both bodies of literature,
we define a market-based multirobot coordination ap-
proach based on the following requirements.

• The team is given an objective that can be
decomposed into subcomponents achievable by
individuals or subteams. The team has access to a
limited set of resources with which to meet this
objective.

• A global objective function quantifies the system
designer’s preferences over all possible solutions.

• An individual utility function (or cost function)
specified for each robot quantifies that robot’s
preferences for its individual resource usage and
contributions towards the team objective given its
current state. Evaluating this function cannot
require global or perfect information about the
state of the team or team objective. Subteam
preferences can also be quantified through a
combination of individual utilities (or costs).

• A mapping is defined between the team objective
function and individual and subteam utilities (or
costs). This mapping addresses how the individual

Fig. 1. An illustration of three robots exploring Mars. The robots’ task

is to gather data around the four craters, which can be achieved by

visiting the highlighted target sites.

1258 Proceedings of the IEEE | Vol. 94, No. 7, July 2006

Dias et al. : Market-Based Multirobot Coordination: A Survey and Analysis

Example scenario: three robots exploring Mars. The 
robots need to gather data around the craters; they 
need to visit the 7 highlighted sites. Which robot visits 
each site?

*image credit: Dias et al.
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Market-Based Coordination
• Underlying mechanism: auctions 
• Auctioneer: offers items (tasks or resources) in announcement 

• Participants (robots) submit bids to negotiate allocation of items  

‣ sealed-bid vs. open-cry 

‣ first-price vs. Vickrey auction 

• Single-item auction: 

‣ highest bidder wins task 

‣ if no bid beats reserve-price, then auctioneer can retain item 

• Combinatorial auction: 

‣ multiple items, robots bid on bundles 

‣ a bid expresses synergies between items 

• Multi-item auction: 

‣ a robot can win at most one item apiece 

‣ special case of combinatorial auction for bundle of size 1
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Market-Based Coordination

!31

A B A B

Robot 1 50 100

Robot 2 - 70
50

100

130

70

allocation cost

Robot 1
profit: 70 = 120-50

profit: 80 = 150-70

reward: 120 reward: 150

reserve price not met

bids placed for tasks

system cost: 50+70 = 120

A simple example (multi-item auction)

Running time: O(NRM) (greedy) or O(N2R) (optimal) [T. Sandholm; 2002]

Robot 2
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Market-Based Allocation Frameworks
•  Murdoch [Gerkey, Mataric; 2002]  

‣  loosely coordinated tasks  

‣  demonstrated on box pushing  

‣  demonstrated robustness, fast auctioning  

•  TraderBots [Dias et al.; 2004]  

‣  loosely coordinated tasks  

‣  demonstrated on exploration tasks  

‣  demonstrated robustness, scalability, auction types, task trees  

•  Hoplites [Kalra, Stentz; 2005]  

‣  tightly coordinated spatial tasks  

‣  robots auction plans not tasks  

‣  demonstrated on perimeter sweeping, constrained exploration 
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Centralized vs Decentralized Assignment

!33

centralized decentralized

• Centralized assignment. Cost estimates are 
known at a central point (computational unit). 
The unit performs the assignment and 
communicates with all robots.

• Decentralized assignment. Robots do not 
have global knowledge of each other’s costs. 
They locally negotiate assignments.

Hybrid mechanisms: locally defined robot cliques can elect 
‘leader’ robots and perform centralized mechanisms.
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Threshold-Based Assignment
• Fully decentralized mechanism. 

• Each robot has an activation threshold for each task that needs to be performed. 

• A stimulus: 
‣ reflects the urgency of a task 

‣ continuously perceived locally by each individual robot 

• Example: threshold-based control of aggregation [Agassounon, Martinoli; 2002] 

‣ Goal: aggregate all sticks into 1 cluster 

‣ End criterion: robots should stop working once task is achieved

!34

Threshold-Based Control of Aggregation 
(Agassounon and Martinoli, 2002)

Special type of aggregation: linear structure assembly; only seeds 
at the tips of a cluster can be manipulated

Initial situation Final situation
Parking lot

35

Threshold-Based Control of Aggregation 
(Agassounon and Martinoli, 2002)

Special type of aggregation: linear structure assembly; only seeds 
at the tips of a cluster can be manipulated

Initial situation Final situation
Parking lot

35

initial situation final situation
Lecture 2: Task Assignment in Multi-Robot Systems



Threshold-Based Assignment
• Stimulus: time needed to find a stick to manipulate (the longer the 

time, the lower the stimulus associated with the task). 

• Threshold is self-calibrated (fully decentralized). 

• Key: The number of manipulation sites (either end of  
line of sticks) decreases as global task nears  
completion. 

• If time to find next stick goes beyond threshold  
T, then agent switches to resting behavior.

!35

seeds introduced during the aggregation process 2 hours after the 
start). 

Table 2. Integrated cost  

Algorithm Arena1 Arena2 Arena3 
PrFT 138.9±7.0 324.9 ± 10.8 154.5 ± 7.9 
PrVT 155.1 ± 8.0 231.9 ± 10.7 152.2 ± 8.7 
PuFT 138.2 ± 6.9 337.6± 10.7 122.4± 6.4 

W/o WA 227.4 ± 4.8 310.8 ± 8.8 197.2 ± 5.9 
 
The PuFT and PrFT algorithms appear to be the most efficient in 
Arena1 (i.e. equivalent performances following the criterion), 
PrVT in arena2, and PuFT in Arena3.  

4.3.1. Private, Fixed-Threshold Worker Allocation 
Figure 4 shows the outcome of the aggregation experiment using 
the worker allocation algorithms with a team of 10 agents in an 
80X80 cm arena. Figure 4 shows that here, conversely to the case 
without worker allocation, during the last phase of the 
aggregation, the average cluster size remains an increasing 
function of time eventually reaching 20 seeds, the optimal largest 
value possible, while the number of active workers in the 
environment decreases. Intuitively, this can be explained by the 
fact that with only two manipulation sites remaining in the arena, 
and on average half of the active agents always carrying a seed 
and the other half not, reducing the number of active agents, 
consequently increases the size of the single cluster. 

However, due to the a priori fixed response threshold value the 
agents behave sub-optimally in a different environment. For 
instance, when performing the same aggregation task in a 
178X178 cm arena, the average size of the clusters they create are 
smaller on average than the average size of those created by the 

team using the PrVT algorithm (with similar standard deviations) 
because the agents withdraw too soon. This is illustrated in Figure 
5 where after 120 minutes, the size of the clusters created using 
the PrFT algorithm becomes (and remains for the rest of the 
experiment) distinctively smaller on average than that of the 
clusters created using the PrVT algorithm. As a consequence, the 
aggregation efficiency of the PrFT algorithm deteriorated 
considerably in Arena2 as shown in Table 2. 

4.3.2. Private, Variable-Threshold Worker 
Allocation 

The density of manipulation sites (seeds that can be manipulated) 
is higher in the smaller arena and the robots are more likely to 
encounter them than in the larger arena. In response to this 
difference in density of manipulation sites, variable-threshold 
workers autonomously set their response thresholds higher in 
Arena2. Therefore, they stay active longer in the larger arena than 
in the smaller and this in turn allows them to continue performing 
the task, as most seeds are not gathered yet into a single cluster. 
This is illustrated by Figure 5 where it clearly appears that PrFT 
and PuFT under-perform due to a relatively too low homogeneous 
threshold value and their inability to adapt to a new environment. 

However, the PrVT algorithm is not appropriate for an optimal 
response of the agents to a dynamic change in the number of 
objects to manipulate. For instance, results in Table 2 show that 
when additional seeds are dropped in the arena after 2 h into the 
aggregation process, the efficiency of the PrVT algorithm 
deteriorates. This results from the nonexistence of a continuous 
adaptive activity threshold mechanism that allows the agents to 
upgrade their activity thresholds when facing a sudden increase in 
the availability of work. 

Figure 4 b. Average number of active workers for 
aggregation experiment with worker allocation 

algorithms in an 80X80 cm arena 

Figure 4 a. Average cluster size for aggregation 
experiment with worker allocation algorithms in an 

80X80 cm arena 

seeds introduced during the aggregation process 2 hours after the 
start). 

Table 2. Integrated cost  

Algorithm Arena1 Arena2 Arena3 
PrFT 138.9±7.0 324.9 ± 10.8 154.5 ± 7.9 
PrVT 155.1 ± 8.0 231.9 ± 10.7 152.2 ± 8.7 
PuFT 138.2 ± 6.9 337.6± 10.7 122.4± 6.4 

W/o WA 227.4 ± 4.8 310.8 ± 8.8 197.2 ± 5.9 
 
The PuFT and PrFT algorithms appear to be the most efficient in 
Arena1 (i.e. equivalent performances following the criterion), 
PrVT in arena2, and PuFT in Arena3.  

4.3.1. Private, Fixed-Threshold Worker Allocation 
Figure 4 shows the outcome of the aggregation experiment using 
the worker allocation algorithms with a team of 10 agents in an 
80X80 cm arena. Figure 4 shows that here, conversely to the case 
without worker allocation, during the last phase of the 
aggregation, the average cluster size remains an increasing 
function of time eventually reaching 20 seeds, the optimal largest 
value possible, while the number of active workers in the 
environment decreases. Intuitively, this can be explained by the 
fact that with only two manipulation sites remaining in the arena, 
and on average half of the active agents always carrying a seed 
and the other half not, reducing the number of active agents, 
consequently increases the size of the single cluster. 

However, due to the a priori fixed response threshold value the 
agents behave sub-optimally in a different environment. For 
instance, when performing the same aggregation task in a 
178X178 cm arena, the average size of the clusters they create are 
smaller on average than the average size of those created by the 

team using the PrVT algorithm (with similar standard deviations) 
because the agents withdraw too soon. This is illustrated in Figure 
5 where after 120 minutes, the size of the clusters created using 
the PrFT algorithm becomes (and remains for the rest of the 
experiment) distinctively smaller on average than that of the 
clusters created using the PrVT algorithm. As a consequence, the 
aggregation efficiency of the PrFT algorithm deteriorated 
considerably in Arena2 as shown in Table 2. 

4.3.2. Private, Variable-Threshold Worker 
Allocation 

The density of manipulation sites (seeds that can be manipulated) 
is higher in the smaller arena and the robots are more likely to 
encounter them than in the larger arena. In response to this 
difference in density of manipulation sites, variable-threshold 
workers autonomously set their response thresholds higher in 
Arena2. Therefore, they stay active longer in the larger arena than 
in the smaller and this in turn allows them to continue performing 
the task, as most seeds are not gathered yet into a single cluster. 
This is illustrated by Figure 5 where it clearly appears that PrFT 
and PuFT under-perform due to a relatively too low homogeneous 
threshold value and their inability to adapt to a new environment. 

However, the PrVT algorithm is not appropriate for an optimal 
response of the agents to a dynamic change in the number of 
objects to manipulate. For instance, results in Table 2 show that 
when additional seeds are dropped in the arena after 2 h into the 
aggregation process, the efficiency of the PrVT algorithm 
deteriorates. This results from the nonexistence of a continuous 
adaptive activity threshold mechanism that allows the agents to 
upgrade their activity thresholds when facing a sudden increase in 
the availability of work. 

Figure 4 b. Average number of active workers for 
aggregation experiment with worker allocation 

algorithms in an 80X80 cm arena 

Figure 4 a. Average cluster size for aggregation 
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*image credit: Agassounon et al.

T = f ⋅
1
K

K

∑
k=1

tk

threshold number of sticks 
successfully 

collected so far

time taken to  
find kth  stick
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Overview of Allocation Methods

!36

centralized vs 
decentralized optimality completeness

Hungarian method centralized optimal guaranteed

Mean-field approach centralized or 
decentralized

approximative

The system converges. 
With high probability, 

completeness is 
guaranteed

Market-based 
approach

centralized or 
decentralized

greedy (sub-optimal) 
or optimal

depends on reserve 
price

Threshold-based 
approach decentralized suboptimal not guaranteed
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Further Reading
Nice overview of the classical problem: 

http://www.assignmentproblems.com/ 

Seminal papers: 

• B. Gerkey and M. Mataric, “A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems”. Int. 
Journal of Robotics Research, 2004.  

• M. B. Dias et al; “Market-Based Multirobot Coordination: A Survey and Analysis”;  2006  

• D.P. Bertsekas, “The Auction Algorithm: A Distributed Relaxation Method for the Assignment Problem”; 1988. 

• N. Kalra, A. Martinoli, “Comparative study of market-based and threshold-based task allocation”; 2006 

Some new approaches for those interested: 

• Redundant robot assignment under uncertainty: A. Prorok, Redundant Robot Assignment on Graphs with 
Uncertain Edge Costs, 14th International Symposium on Distributed Autonomous Robotic Systems (DARS), 
2018 

• Assignment in heterogeneous robot swarms: A. Prorok, M. A. Hsieh, and V. Kumar. The Impact of Diversity on 
Optimal Control Policies for Heterogeneous Robot Swarms. IEEE Transactions on Robotics (T-RO); 2017. 

• Assignment under privacy constraints: A. Prorok, V. Kumar, Privacy-Preserving Vehicle Assignment for Mobility-
on-Demand Systems, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017
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In this Lecture

• Taxonomy of MR path planning problems 

• MR path planning methods: 

‣ Discrete 

‣ Continuous  

• Concurrent assignment and path planning
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Taxonomy of Multi-Robot Path Planning Problems

• Domain: continuous vs. discrete 

‣ Continuous: planning time-parameterized trajectories in metric space. 

‣ Discrete: planning on graphs, or regular grids 

• Goal assignment: labeled vs. unlabeled 

‣ Labeled: each robot has a predetermined goal destination 

‣ Unlabeled: all goals must be reached, but assignment is not predetermined 

• Problem representation: coupled vs. decoupled 

‣ Coupled: represent the joint state of all robots in the system 

‣ Decoupled: each robot’s state represented independently 

• Planning: reactive vs. deliberative 

‣ Reactive: dynamic obstacle avoidance; plan as you go (cf. decentralized) 

‣ Deliberative: planning for optimality (cf. centralized, coupled) 

• Computation: centralized vs. decentralized
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Multi-Agent Path Planning
• Multi-robot path planning  ⟶  multi-agent path planning: 

‣ discretized environment (grids or planar graphs) 

‣ point robots (holonomic, no motion constraints) 

• The problem: 

‣ Given: a number of agents at start locations  
with predefined goal locations, and a known  
environment   

‣ Task: find collision-free paths for the agents from their start to 
their goal locations that optimize some objective 

• Generally, we assumed a labeled problem. 

• Classical application domain: automated warehouses (e.g., Amazon)
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Multi-Agent Path Planning
• Allowed motion: North, East, South, West 

• Collisions:

!6

vertex-collision edge-collision

• Performance metrics 

‣ Makespan: time of last robot’s arrival time 

‣ Flowtime: sum of arrival times, over all robots

no collision
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Coupled vs Decoupled Path Planning

!7

Completeness achieved.Potential deadlock

• Coupled planning provides completeness. 
• Decoupled path planning is not complete, in general.
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Coupled Path Planning

Coupled formulation:

!8

𝒞i

The joint state space is given by the Cartesian product:

X = 𝒞1 × 𝒞2 × … × 𝒞n

Robot i has configuration space:

The dimensionality grows linearly w.r.t. the number of robots. 
Complete algorithms (such as A*) require time that is at least 
exponential w.r.t. the search space dimension!
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Coupled Path Planning
Coupled formulation for N robots and M cells in grid-world:

!9

𝒞1 𝒞2 𝒞3

…

For M possible states in each configuration space, we have MN 

states in the coupled system.

x x x

E.g., worst case complexity for A*: O( |E | ) ≈ O( |V | ) = O(MN)

* if graph is sparse
Exponential complexity in the number of robots!
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Coupled Path Planning

• Hardness: NP-hard to solve optimally for makespan or flowtime 
minimization [Yu and LaValle; 2013] 

• It is impossible to minimize both objectives simultaneously (Pareto) 

• But: coupled method provides completeness and optimality 
‣ Lots of attention devoted to this field 

‣ Development of approximate solutions (see literature by Sven 
Koenig; Howie Choset; Maxim Likhachev)
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• Decoupled path planning is not complete, in general. 
• But: in well-formed environments, prioritized decoupled 

planning is complete! 
‣ Well-formed environment: goals are distributed in such a way 

that any robot standing on a goal cannot completely prevent 
other robots from moving between any other two goals.

Coupled vs Decoupled Path Planning

!11

Completeness achieved.Potential deadlock

[Cap, Novak, Klaeiner, Selecky; 2015]
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Decoupled Path Planning

• Well-formed environment: 

‣ There must exist a path between any two endpoints.  

‣ That path must have with at least R-clearance with respect to static 
obstacles and at least 2R-clearance to any other endpoint. 

‣ A robot is always able to find a collision-free trajectory to its goal by 
waiting for other robots to reach their goals, and then following a path 
around those occupied goals (any prioritization works!).
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Decoupled Path Planning
• De-coupling the problem: 

‣ Each robot plans in its own space-time 

‣ Robots negotiate path plans as conflicts arise 

‣ De-confliction can be online (dynamic) or offline (a-priori)

!13

x

x
visibility range or 
communication range
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Decoupled, Prioritized Path Planning

!14

Graph representation. Each robot travels along the edges
of a directed graph Gn = ⟨Vn, En⟩, which allows only fea-
sible motion and accounts for all constraints (morphological,
kinematic, dynamic). In particular, a robot rn that travels along
edges in Gn cannot collide with any obstacles in O. The set Vn

is defined by vertices vi = ⟨xi, ti⟩ with xi ∈W and ti ∈ R+.
The set En is defined by edges eij : R+ $→ R2, between
vertex vi and vj , such that eij(ti) = xi and eij(tj) = xj . In
other words, the graph Gn exists in a three-dimensional space,
where the last dimension represents time.

Labeled assignment. Robot rn is assigned a start location
sn ∈ W (corresponding to vertex vi with xi = sn and
ti = 0). Similarly, robot rn is assigned a goal location
gn ∈ W (corresponding to a set of vertices vi with xi = gn

and ti ∈ R+). A labeled assignment A is a set of tuples
{⟨s1,g1⟩, . . . , ⟨sN ,gN ⟩}, for all robots in R. The start and
goal locations are assumed to be mutually disjunct.

Conflict-free trajectories. A robot rn has a trajectory πn :
R+ $→W that represents a sequence of edges traversed in Gn

such that two consecutive edges share a common vertex. A
trajectory πn is said to be satisfying if πn(0) = sn and there
exists a time tfn such that πn(tfn) = gn. A robot rn navigating
along this path defines a volume V (πn, ρn) that depends on its
size. To coordinate the navigation in W , two robots rn and rm
can share their path plans with each other if they are within
communication range, i.e., if their positions are separated by a
quantity less than c (all robots have the same communication
range, and hence, detections are always mutual). We make
use of a function TRIM(Gn, ρn, V (πm, ρm)) that removes all
unfeasible paths in Gn that would collide with the volume
defined by robot rm. Any path in the graph returned by TRIM

is ensured to be conflict-free with the path πm of robot rm.
Finally, we define the notion of an effective obstacle, which

is a set of original obstacles in O, such that no trajectories in a
given graph passes between them (see Figure 6). Specifically,
a robot rn has a set of effective obstacles Õn = {õ1, . . . , õB̃},

B̃ ≤ B, with õi ⊆ O and ∪iõi = O and ∩iõi = ∅.
Figure 2 shows a labeled assignment for two robots

that must plan minimum-cost trajectories from their start
positions to their goal positions. Figure 3 demonstrates
how robot r2 circumnavigates robot r1, after execution of
TRIM(G2, ρ2, V (π1, ρ1)).

Objective. Our goal is to find a method that strikes the best
balance between minimizing the mean flowtime (

∑
n t

f
n/N )

and minimizing the makespan (maxn tfn), such that each robot
rn follows a satisfying trajectory πn which is conflict-free
with all other robots’ paths. We note that, in general, these
objectives demonstrate a pairwise Pareto optimal structure, and
cannot be simultaneously optimized [31].

IV. DECENTRALIZED COORDINATION

Our decentralized path planning algorithm can be broken
down into two levels: at the higher level (i.e., coordinated
planning), we consider how robots communicate and negotiate
a priority ordering; at the lower level (i.e., individual planning),
we consider how an individual robot (re)plans a trajectory to

s1

g1

g2 s2

x

y

Fig. 2: Planar workspace with two robots, r1 and r2, and their respective
start and goal positions. Robot r2 has an effective size ρ2 that is twice that
of robot r1. The minimum-cost paths would result in a collision.

x

y
t

V (π1, ρ1)

V (π2, ρ2)
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g1
g2

Fig. 3: On the left, we plot the space-time graph G1 with a minimum-cost
trajectory π1 for robot r1. On the right, we see how trajectory π2 sweeps a
volume V (π2, ρ2) that does not intersect with V (π1, ρ1).

its goal given its current knowledge about the environment
and the plans of other robots within communication range.
We make use of the following definitions.

Definition 1 (Priority ordering). A priority ordering ≺ is such

that a robot rn ∈ R with priority ξn is of higher priority than

robot rm with priority ξm iff ξn ≺ ξm.

Definition 2 (Ordered robot set). Given a priority ordering

≺ on a set of robots R, the pair (R,≺) is a strict partially

ordered robot set.

Definition 3 (Ordered robot neighborhood). Given a priority

ordering ≺, for a given robot rn, Hn = {rm|ξm ≺ ξn} is

the set of robots with higher priority, and Ln = {rm|ξm ≻
ξn} is the set of robots with lower priority. The neighborhood

of robot rn defined as Nn = Hn ∪ Ln ∪ {rn} is strongly

connected (by symmetry of communication). By definition, the

robot neighborhood Nn is an ordered robot set (Nn,≺).
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with all other robots’ paths. We note that, in general, these
objectives demonstrate a pairwise Pareto optimal structure, and
cannot be simultaneously optimized [31].
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We make use of the following definitions.

Definition 1 (Priority ordering). A priority ordering ≺ is such

that a robot rn ∈ R with priority ξn is of higher priority than

robot rm with priority ξm iff ξn ≺ ξm.

Definition 2 (Ordered robot set). Given a priority ordering

≺ on a set of robots R, the pair (R,≺) is a strict partially

ordered robot set.
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ordering ≺, for a given robot rn, Hn = {rm|ξm ≺ ξn} is

the set of robots with higher priority, and Ln = {rm|ξm ≻
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[Wu, Bhattacharya, Prorok; arxiv 2019]

The red robot is prioritized and plans a space-time path that is optimal. 
The blue robot plans a path that does not collide with the red robot’s path.

Ideal trajectories for 2 robots Space-time graphs
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Decoupled, Prioritized Path Planning
• Key question: How to prioritize robots? 

• Online, exhaustive method: 

‣ Evaluate all N! options (where N is robots within communication or 
visibility neighborhood) [Azarm, Schmidt; 1997] 

• Existing prioritization heuristics (online and offline): 

‣ Ideal path length: Robots with longer ideal path length have higher 
priority. [Van den Berg et al.] 

‣ Planning time: Robots that take longer to plan their paths get 
higher priority. [Velagapudi, Sycara, Scerri; 2010] 

‣ Workspace clutter: Robots with more clutter in local vicinity have 
higher priority. [Clark, Bretl, Rock; 2002] 

‣ Path prospects: Robots with fewer path options have higher priority 
[Wu, Bhattacharya, Prorok; 2019]
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Decoupled, Prioritized Path Planning
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Algorithm 3: Path Prospects

Input : current position of rn: vn, goal location gn,
untrimmed graph Gn, effective obstacles Õn,
estimated longest path length T

Output: path prospects P (t)
n

F (t)
n ← GETFORWARDSVERTICES(vn,gn, Gn, T )

A← COMPUTEAREA(F (t)
n , En)

κ← 0
for o ∈ Õn do

if o ∩A = o then
κ← κ+ 1 // count this obstacle

return 2κ

Algorithm 4: Compute Set of Forwards Vertices

Function: GETFORWARDSVERTICES(v,g, G, T )
visited ← ∅
priority queue ← {v} // prioritizes by smallest t
while priority queue ≠ ∅ do

q ← POPSMALLEST(priority queue) with
q = ⟨xq, tq⟩
if xq /∈ visited then

neighbours ← FINDNEIGHBOURS(G, q)
for n ∈ neighbours with n = ⟨xn, tn⟩ do

if tn + TRUEDISTANCE(n,g) ≤ T then
APPEND(priority queue,n)

visited ← visited ∪{xq}

return visited

be estimated locally by broadcasting TRUEDISTANCE(sn,gn)
along with priority ξn in Algorithm 1. Figure 5 illustrates the
path prospects for a robot navigating towards its goal, at two
consecutive moments in time.

C. Prioritization Heuristic

We use the path prospect algorithm (Algorithm 3) to prior-
itize robots with conflicting paths. For robots rn and rm, we
define the ordering ≺ such that

P (t)
n < P (t)

m ⇔ ξn ≺ ξm. (1)

Priority orderings are negotiated through Algorithm 1. By
prioritizing robots that have fewer path prospects, we force
those robots that have more options to deviate from their
preferred (best) plans, and to give way to the robots that
have fewer options. Figure 6 illustrates how different robot
sizes affect the available path prospects (and hence the priority
ordering).

VI. EVALUATION

We implement our method in grid-worlds. This allows us
to easily create valid graphs Gn for all robots, implement the
corresponding TRIM function, and create a set of effective
obstacles Õn for any robot rn by inflating original obstacles in

(a) Maze-1 (b) Maze-2

(c) Crossing (d) Clutter

(e) Corridor (f) Tunnel

Fig. 7: Examples of path solutions for the six maps used in our problem sets.
In each problem, 10 robots of five different sizes are assigned random start
and goal positions.

O by ρn. We note that this dilation can be done more generally
(beyond regular grid-worlds) by applying Minkowski addition.
We evaluate the performance of our method in six different
cluttered environments, depicted in Figure 7. Environments (a)
to (f) are of size 75×75. We use a team of 10 robots of five
different sizes, with two robots per size, and sizes ranging from
1 to 5. For each base environment, we generate 500 problems
(random assignments), and record the performance of the path
plan solutions provided by our algorithm (with two alternative
tie-break options to guarantee strict orderings), as well as by
five additional benchmark algorithms (described below). We
solve each problem across communication ranges c that vary
between 30 and 50.

A. Benchmarks

In order to test the efficacy of our prioritization method, we
perform an ablation analysis. The aim of this ablation study is
to identify the efficacy of our proposed path prospects heuristic
by isolating its two key components: (i) the spatial area within
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Example of a multi-agent system where agents have heterogeneous sizes. 
Agents with fewer path prospects are prioritized.

start positions
goal positions
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The Continuous Domain
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*movie credit: Gowal, Martinoli
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Minkowski Sum
• In geometry, the Minkowski sum (also known as dilation) of 

two sets of position vectors A and B in Euclidean space is formed 
by adding each vector in A to each vector in B, i.e., the set:

!18

A ⊕ B = {a + b |a ∈ A, b ∈ B}

A ⊕ B

B

A
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−A

Minkowski Sum
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−A ⊕ B

B

B

B
robot motion control 

reference point

‘moving robot’

static obstacle

As long as reference point stays outside dilated 
area, there will be no collisions.
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Velocity Obstacle Method
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B

A

vA

vB

Two robots, A and B, translating in space. Will they collide?

[Fiorini, Shiller; 1998]

robot motion control 
reference point

Lecture 3: Multi-Robot Navigation and Path Planning



Velocity Obstacle Method
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B

A

vA

vB

Two robots, A and B, translating in space. Will they collide? 
Step 1: inflate robot B by area of robot A. 

−A ⊕ B

VOA
B(vB = 0)
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Velocity Obstacle Method
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−A ⊕ B

B

A

VOA
B(vB)

VOA
B(vB = 0)

vA

vB

(vB)

Step 2: determine whether vA lies in the velocity obstacle of B to A 
If vA is outside the VO, then the robots will never collide.
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Velocity Obstacle Method
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−A ⊕ B

B

A

VOA
B(vB)

VOA
B(vB = 0)

vA − vB

vB

(vB)

Equivalence: vA lies in the velocity obstacle of B to A  ⟶  the relative velocity vA - vB 

lies in the velocity obstacle of B to A, assuming B does not move.

vA
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Velocity Obstacle Method
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B

A

vA(t0)

vB

Compute set of admissible accelerations for robot A.

··xAΔt

vA(t0 + Δt)

set of admissible accelerations
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Velocity Obstacle Method
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B

A

vA(t0)

vB

··xAΔt

VOA
B(vB)

vA(t0 + Δt)

Check that new velocity is outside VO.

set of admissible accelerations
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Velocity Obstacle Method

• Assumptions: 

‣ Robots share their current (noise-free) position and velocity 

‣ Robots truthfully execute reported velocities 

• Complications: 

‣ Oscillations! Scenario: Robots with current velocities vA and vB 
currently lie in each others VOs. Both robots select new v’A and 
v’B such that new velocities lie outside respective VOs. In new 
situation, the old velocities vA and vB lie outside VOs. If vA and vB 
are preferable (e.g., they lie on direct path to goal), they will be 
chosen again, hence, leading to oscillations. 

‣ Solution: See reciprocal velocity obstacle method.
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Reciprocal Velocity Obstacle Method
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B

A
vA + vB

2

vB

(vB)

vA

VOA
B(vB)

Geometric interpretation: 
the apex of the RVO lies at:

RVOA
B(vB, vA)

The old velocity of A is inside the new RVO of B to A, given the new velocities. 

[Van den Berg, Lin, Manocha; 2008]

Choosing the closest velocity 
outside the other agent’s RVO 
guarantees oscillation-free 
navigation.  

The RVO of B to A contains all 
the velocities of A that are the 
average of the current velocity 
vA and a velocity inside the 
VO of B to A. 

Idea: Choose a new velocity that is the average of its current velocity and a velocity that lies 
outside the other agent’s velocity obstacle.
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Reciprocal Velocity Obstacle Method
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[D. Manocha et al.]
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• New problem formulation: 

‣ N robots need to reach N goal locations as efficiently as possible: we want to find the 
assignment as well as generate the trajectories, simultaneously. 

‣ Un-labeled problem (any robot may go to any goal) 

‣ Robots must have collision-free trajectories 

• Assumptions: 

‣ Robots have a minimum separation distance at start / goal locations 

‣ Robots are holonomic and arrive simultaneously at goals

!29

Concurrent Assignment and Planning of Trajectories

goal locations

start locations
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Given start and goal locations, find assignments AND trajectories 
that are optimal and collision-free

Concurrent Assignment and Planning of Trajectories
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Concurrent Assignment and Planning of Trajectories

Given start and goal locations, find assignments AND trajectories 
that are optimal and collision-free

Lecture 3: Multi-Robot Navigation and Path Planning



!32

Concurrent Assignment and Planning of Trajectories

What is the optimization objective?

Sum of distances:

Sum of distances squared:

[Turpin et al.; IJRR 2013]

goalsstarts
half-time
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102 The International Journal of Robotics Research 33(1)

Fig. 3. For the example with two agents in (a) we can see that the minimum sum of distances paths (calculated by (10)) never intersect.
However, having intersection-free paths does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments, as shown in (b), does ensure collision-free trajectories. It should be noted that minimizing the sum of
distance traveled squared arrives at the collision-free assignment in (b).

are suboptimal, may require enlargement of the region K,
and are more difficult to compute than those which will be
presented in Section 3.2.

3.2. Minimum velocity squared trajectories

The second method we propose is to minimize the sum of
the integral of velocity squared traveled by all agents:

minimize
φ,γ (t)

N∑

i=1

∫ tf

t0

ẋi( t) Tẋi( t)dt

subject to (1), (2), (3), (4), (5), (6)

which is equivalent to:

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5), (6)

(11)

We propose C-CAPT as the solution to this problem and
detail its development in the remainder of this section.

To clarify how the optimization in Section 3.2 differs
from that in Section 3.1, consider moving a contiguous
block of a number of books each with identical width
to another contiguous block, but moved one book over
and ignoring collisions. One solution is to move the first
book to the last position, where another is to move each
book one position over. Both schemes result in the same
sum of distance traveled, however moving each book one
unit over results in a lower sum of distances squared as a
result of distance squared being a strictly convex cost func-
tion. Notice that in the many smaller moves solution, one
book will not cross another. To relate this simple exam-
ple to the CAPT problem, we note that all of the books
can be simultaneously shifted to their new location without
collision.

We will temporarily relax (11) to ignore the clearance
requirements in (6):

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5)

(12)

Fig. 4. Solution times for the Hungarian Algorithm to solve (13)
in MATLAB on a standard laptop computer. The box-plot is gener-
ated based on 10 trials for each value of N . Note that the algorithm
runtime trends toward N3 growth. Boxes represent the 25th and
75th percentiles, whiskers denote the 99% confidence interval and
outliers are marked using “+”.

The solution to (12) will consist of straight line trajecto-
ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :

Di,j = ||xi( t0)−gj||2 i ∈ IN , j ∈ IM

We then solve for the optimal distance squared assignment
matrix φ⋆:

φ⋆ = argmin
φ

N∑

i=1

M∑

j=1

φi,jDi,j (13)

We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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3.2.2. Trajectory generation. The termination time tf can
be computed as follows:

tf = maximize
i

∣∣∣
∣∣∣xi( t0)−

∑M
j=1 φ∗i,jgj

∣∣∣
∣∣∣
2

vmax
(14)

Define the polynomial function of time:

β( t) ≡
k∑

i=0

αiti ∈ [0, 1]

such that β( t0) = 0 and β( tf ) = 1.
A straight forward application of the calculus of varia-

tions shows that the trajectories which minimize the integral
of velocity squared are those with constant velocity and
satisfy the boundary conditions:

γ ⋆( t) = (1−β( t)) X(t0) + β( t) (&G + ( INn−&&T) X(t0))
(15)

where β is defined by the first order polynomial:

α0 = −t0
tf − t0

, α1 = 1
tf − t0

, α2 = 0 . . . αk = 0

It is clear that at t = t0, γ ⋆( t0) = X( t0), and therefore
(15) satisfies the initial conditions in (3).

In equation (15), the term, INn − &&T, selects all unas-
signed robots and ensures that these robots remain at their
original location. If M ≥ N , using (2), this term will disap-
pear as expected, resulting from the fact that all robots will
be assigned.

We also verify that γ ⋆( t) satisfies the final boundary
conditions specified in (4):

γ ⋆( tf ) = &G + ( INn −&&T) X( t0)

If M ≥ N , then using (2), &&T = INn and γ ⋆( tf ) = &G. If
instead N ≥ M , we can premultiply (15) by &T:

&Tγ ⋆( tf ) = &T&G + ( &TINn −&T&&T) X( t0)

We also know from (2) that &T& = IMn to thus verify that
&Tγ ⋆( tf ) = G. Therefore, the trajectories defined in (15)
satisfy the terminal conditions in (4).

The definition of the termination time tf in (14)
guarantees that all robots satisfy their actuation bounds
in (5).

3.2.3. Collision avoidance. We have shown that (13) and
(15) generate the solution to the relaxed problem without
considering collisions in (12). However, we will utilize the
properties of the CAPT problem to demonstrate in Theorem
3.3 that if ' > 2

√
2R, these equations also provide the

solution to the full collision avoidance problem in (11).
For notational convenience, we define:

ri,j ≡ xj( tf )−xi( t0) uij ≡ xj( t0)−xi( t0)

wij ≡ xj( tf )−xi( tf )

We first prove a lemma related to the geometry of the
optimal solutions.

Lemma 3.2. The optimal solutions to (12) satisfy:

wi,j
Tui,j ≥ 0 ∀i, j ∈ IN (16)

Proof. We globally minimized the sum of integrated veloc-
ity squared in (12) such that switching goal states of agent i
with agent j will not decrease the sum of distance squared,
or:

||ri,i||2 + ||rj,j||2 ≤ ||ri,j||2 + ||rj,i||2 ∀i, j ∈ IN (17)

We then substitute:

||ri,j||2 = ri,j
Tri,j

=xj( tf ) Txj( tf )−2xi( t0) Txj( tf ) + xi( t0) Txi( t0)

into (17) and simplify:

( xj( tf )−xi( tf )) T( xj( t0)−xi( t0))≥ 0 ∀i, j ∈ IN

or
wi,j

Tui,j ≥ 0 ∀i, j ∈ IN (18)

Theorem 3.3. If ' > 2
√

2R, trajectories in (15) will satisfy
(6) and be collision-free.

Proof. The location of robot i following the trajectory
specified in (15) is:

xi( t) = ( 1− β) xi( t0) + βxi( tf )

Therefore the distance between robots i and j is:

||xj( t)−xi( t) || = ||( 1− β) xj( t0) +βxj( tf )

− ( 1− β) xi( t0)−βxi( tf ) ||

and the distance squared between these robots is:

||xj − xi||2=||(1−β) ( xj( t0)−xi( t0)) +β(xj( tf )−xi( tf ))||2

=||uij + β( wij − uij) ||2

We can simplify this result:

||xj − xi||2 = ( uij + β( wij − uij)) T( uij + β( wij − uij))
(19)

Define for notational convenience:

a ≡ uij
Tuij b ≡ wij

Tuij c ≡ wij
Twij

Equation (19) simplifies to:

||xi − xj||2 = a− 2β( a− b) + β2( a− 2b + c) (20)

We can find the value of β which minimizes the distance
squared (and therefore the distance) between agents i and j
(i ̸= j):

β⋆
i,j = argmin

β

||xi − xj|| = a− b
a− 2b + c

(21)
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Fig. 3. For the example with two agents in (a) we can see that the minimum sum of distances paths (calculated by (10)) never intersect.
However, having intersection-free paths does not guarantee collision-free trajectories for agents with finite size. In this case, merely
switching goal assignments, as shown in (b), does ensure collision-free trajectories. It should be noted that minimizing the sum of
distance traveled squared arrives at the collision-free assignment in (b).

are suboptimal, may require enlargement of the region K,
and are more difficult to compute than those which will be
presented in Section 3.2.

3.2. Minimum velocity squared trajectories

The second method we propose is to minimize the sum of
the integral of velocity squared traveled by all agents:

minimize
φ,γ (t)

N∑

i=1

∫ tf

t0

ẋi( t) Tẋi( t)dt

subject to (1), (2), (3), (4), (5), (6)

which is equivalent to:

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5), (6)

(11)

We propose C-CAPT as the solution to this problem and
detail its development in the remainder of this section.

To clarify how the optimization in Section 3.2 differs
from that in Section 3.1, consider moving a contiguous
block of a number of books each with identical width
to another contiguous block, but moved one book over
and ignoring collisions. One solution is to move the first
book to the last position, where another is to move each
book one position over. Both schemes result in the same
sum of distance traveled, however moving each book one
unit over results in a lower sum of distances squared as a
result of distance squared being a strictly convex cost func-
tion. Notice that in the many smaller moves solution, one
book will not cross another. To relate this simple exam-
ple to the CAPT problem, we note that all of the books
can be simultaneously shifted to their new location without
collision.

We will temporarily relax (11) to ignore the clearance
requirements in (6):

minimize
φ,γ (t)

∫ tf

t0

Ẋ ( t) TẊ ( t) dt

subject to (1), (2), (3), (4), (5)

(12)

Fig. 4. Solution times for the Hungarian Algorithm to solve (13)
in MATLAB on a standard laptop computer. The box-plot is gener-
ated based on 10 trials for each value of N . Note that the algorithm
runtime trends toward N3 growth. Boxes represent the 25th and
75th percentiles, whiskers denote the 99% confidence interval and
outliers are marked using “+”.

The solution to (12) will consist of straight line trajecto-
ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :

Di,j = ||xi( t0)−gj||2 i ∈ IN , j ∈ IM

We then solve for the optimal distance squared assignment
matrix φ⋆:

φ⋆ = argmin
φ

N∑

i=1

M∑

j=1

φi,jDi,j (13)

We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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detail its development in the remainder of this section.
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to another contiguous block, but moved one book over
and ignoring collisions. One solution is to move the first
book to the last position, where another is to move each
book one position over. Both schemes result in the same
sum of distance traveled, however moving each book one
unit over results in a lower sum of distances squared as a
result of distance squared being a strictly convex cost func-
tion. Notice that in the many smaller moves solution, one
book will not cross another. To relate this simple exam-
ple to the CAPT problem, we note that all of the books
can be simultaneously shifted to their new location without
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The solution to (12) will consist of straight line trajecto-
ries which satisfy the boundary conditions while minimiz-
ing the sum of distance traveled squared.

3.2.1. Optimal assignment. We first consider the assign-
ment problem and create a distance squared matrix D ∈
RN×M :

Di,j = ||xi( t0)−gj||2 i ∈ IN , j ∈ IM

We then solve for the optimal distance squared assignment
matrix φ⋆:

φ⋆ = argmin
φ
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φi,jDi,j (13)

We note that φ⋆ satisfies (1) and (2).
This is a linear assignment problem and therefore an opti-

mal assignment solving algorithm such as the Hungarian
Algorithm can be used to solve for φ⋆. In practice, we see
solve times of under 10 seconds for 400 robot–goal pairs in
MATLAB on a standard laptop computer. Figure 4 displays
run times that trend toward cubic growth in N .
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Fundamental planning concepts: 

• Some of the planning concepts in Steven LaValle’s book.  

Seminal papers: 

• P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles”; 
1998 

• J. van den Berg, M. Lin, D. Manocha; “Reciprocal Velocity Obstacles for Real-Time Multi-Agent 
Navigation”; 2008 

• J. Van Den Berg, M. Overmars. "Prioritized motion planning for multiple robots." 2005 

 
More recent papers: 

• M. Turpin, N. Michael and V. Kumar; “CAPT: Concurrent assignment and planning of trajectories 
for multiple robots”; IJRR 2013  

• M. Čáp, P. Novák, A. Kleiner, M. Selecký; “Prioritized Planning Algorithms for Trajectory; 
“Coordination of Multiple Mobile Robots”; 2015 
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